Home
Class 12
MATHS
If a ge b gt 1, then find the largest p...

If ` a ge b gt 1`, then find the largest possible value of the expression ` log_(a)(a//b)+log_(a)(b//a)`.

Text Solution

Verified by Experts

Let ` x = log_(a) (a//b) + log_(b) (b//a)`
` = log_(a) a-log_(a)b+log_(b) b-log_(b) a`
` = 2- (log_(b) a+log_(a)b)`
` =- (sqrt(log_(b) a)-sqrt(log_(a)b))^(2) le 0`
Hence, the maximum value is 0.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If a>=b>1, then find the largest possible value of the expression log_(a)((a)/(b))+log_(b)((b)/(a))

The least value of expression 2 log_(10)x - log_(x) (1//100) for x gt 1 is:

If log_(sqrt8) b = 3 1/3 , then find the value of b.

The value of (log_(a)(log_(b)a))/(log_(b)(log_(a)b)) is

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

For x>=0, the smallest possible value of the expression,log_(2)(x^(3)-4x^(2)+x+26)-log_(2)(x+2) is ( A ) 1(B) 2(C)5(D) None of these

If log_(2)(a+b)+log_(2)(c+d)>=4. Then find the minimum value of the expression a+b+c+d.

Find the values of the following: a) 30((log_(43) (43))/30) b) (1/2)^(log_(2)5)

If a,b in(0,1) ,then minimum value of log_(a)(ab)-log_(b)((b)/(a)) is

If a=log_(12)18,b=log_(24)54, then find the value of ab+5(a-b)