Home
Class 12
MATHS
If y = a^(1/(1-log(a) x)) and z = a^(1/...

If ` y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))`

Text Solution

AI Generated Solution

To prove that \( x = a^{\frac{1}{1 - \log_a z}} \) given the equations \( y = a^{\frac{1}{1 - \log_a x}} \) and \( z = a^{\frac{1}{1 - \log_a y}} \), we will follow these steps: ### Step 1: Rewrite the equation for \( y \) Given: \[ y = a^{\frac{1}{1 - \log_a x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If y=a^(1/(1-log_ax)), z=a^(1/(1-log_ay)) then prove that x=a^(1/(1-log_az))

If y = a^((1)/( 1 - log_(a)x)) , z = a^((1)/(1 - log_(a)y)) , then x will be

If y=a^(((1)/(1-log_(a)x)))" and "z=a^(((1)/(1-log_(a)y))) , then x is equal to

If y= 2^((1)/(log_(x)4)) then prove that x=y^(2) .

If y=a^(1/(1-log_a x)), z=a^(1/(1-log_a y)), then the value of a^(1/(1-log_a z)) is (i) x/y (ii)y/x (iii)z/y (iv) x

If y=a^ ((1)/(1-log_a x), z=a^((1)/(1-log_ay) and x=a^k, then k

Given y=(1)/(10^(1-log_(10)x)),z=(1)/(10^(1-log_(10)y)), if x=(1)/(10^(a+b log_(10)z)) then (b-a) equals

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz