Home
Class 12
MATHS
If log(sqrt8) b = 3 1/3, then find the ...

If ` log_(sqrt8) b = 3 1/3`, then find the value of b.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{\sqrt{8}} b = 3 \frac{1}{3} \), we will follow these steps: ### Step 1: Convert the mixed number to an improper fraction The mixed number \( 3 \frac{1}{3} \) can be converted to an improper fraction: \[ 3 \frac{1}{3} = \frac{10}{3} \] ### Step 2: Rewrite the logarithmic equation in exponential form Using the property of logarithms, we can rewrite the equation: \[ b = (\sqrt{8})^{\frac{10}{3}} \] ### Step 3: Simplify \( \sqrt{8} \) We know that \( \sqrt{8} = 8^{1/2} \). Since \( 8 = 2^3 \), we can write: \[ \sqrt{8} = (2^3)^{1/2} = 2^{3/2} \] ### Step 4: Substitute back into the equation Now substitute \( \sqrt{8} \) back into the equation for \( b \): \[ b = (2^{3/2})^{\frac{10}{3}} \] ### Step 5: Use the power of a power property Using the property \( (a^m)^n = a^{m \cdot n} \): \[ b = 2^{(3/2) \cdot (10/3)} \] ### Step 6: Simplify the exponent Calculate the exponent: \[ (3/2) \cdot (10/3) = \frac{3 \cdot 10}{2 \cdot 3} = \frac{10}{2} = 5 \] Thus, \[ b = 2^5 \] ### Step 7: Calculate the final value of \( b \) Finally, calculate \( 2^5 \): \[ b = 32 \] ### Final Answer The value of \( b \) is \( 32 \). ---

To solve the equation \( \log_{\sqrt{8}} b = 3 \frac{1}{3} \), we will follow these steps: ### Step 1: Convert the mixed number to an improper fraction The mixed number \( 3 \frac{1}{3} \) can be converted to an improper fraction: \[ 3 \frac{1}{3} = \frac{10}{3} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If log_(sqrt(8))x=3(1)/(3), find the value of x

find the value of log_(sqrt8)16

If log_(ab)a=(1)/(3) then find the value of log_(ab)((sqrt(a))/((b)^((1)/(3))))

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

If log_x log_18 (sqrt2+sqrt8)=1/3. Then the value of 1000 x is equal to

If log_(3) .(x^(3))/(3) - 2 log_(3) 3x^(3)=a-b log_(3)x , then find the value of a + b.

if (a+log_(4)3)/(a+log_(2)3)=(a+log_(8)3)/(a+log_(4)3)=b then find the value of b

If log_(x)log_(18)(sqrt(2)+sqrt(8))=(1)/(3) , then the value of 32x=

if a,b are coprime numbers and satisfying (2+sqrt(3))^(((1-sqrt(3)))/(log_(a)(2-sqrt(3)))+(13-1)/(sqrt(3)+1))=(1)/(12) then find the value of (a+b)