Home
Class 12
MATHS
Find the value oflog(1//3)root(4)(729*ro...

Find the value of`log_(1//3)root(4)(729*root(3)(9^(-1)*27^(-4//3)))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will break it down step by step. ### Step 1: Rewrite the expression We start with the expression: \[ \log_{(1/3)} \left( \sqrt[4]{729} \cdot \sqrt[3]{9^{-1} \cdot 27^{-4/3}} \right) \] ### Step 2: Simplify \( \sqrt[4]{729} \) First, we simplify \( \sqrt[4]{729} \): \[ 729 = 3^6 \quad \text{(since \( 729 = 27^2 = (3^3)^2 = 3^6 \))} \] Thus, \[ \sqrt[4]{729} = (3^6)^{1/4} = 3^{6/4} = 3^{3/2} \] ### Step 3: Simplify \( \sqrt[3]{9^{-1} \cdot 27^{-4/3}} \) Next, we simplify \( \sqrt[3]{9^{-1} \cdot 27^{-4/3}} \): \[ 9 = 3^2 \quad \text{and} \quad 27 = 3^3 \] So, \[ 9^{-1} = (3^2)^{-1} = 3^{-2} \quad \text{and} \quad 27^{-4/3} = (3^3)^{-4/3} = 3^{-4} \] Now combine these: \[ 9^{-1} \cdot 27^{-4/3} = 3^{-2} \cdot 3^{-4} = 3^{-6} \] Now, we take the cube root: \[ \sqrt[3]{3^{-6}} = (3^{-6})^{1/3} = 3^{-6/3} = 3^{-2} \] ### Step 4: Combine the results Now we combine the results from Steps 2 and 3: \[ \sqrt[4]{729} \cdot \sqrt[3]{9^{-1} \cdot 27^{-4/3}} = 3^{3/2} \cdot 3^{-2} = 3^{3/2 - 2} = 3^{3/2 - 4/2} = 3^{-1/2} \] ### Step 5: Substitute back into the logarithm Now we substitute back into the logarithm: \[ \log_{(1/3)}(3^{-1/2}) \] ### Step 6: Use the change of base formula Using the property of logarithms: \[ \log_{a}(b^c) = c \cdot \log_{a}(b) \] we have: \[ \log_{(1/3)}(3^{-1/2}) = -\frac{1}{2} \cdot \log_{(1/3)}(3) \] ### Step 7: Evaluate \( \log_{(1/3)}(3) \) Using the change of base formula: \[ \log_{(1/3)}(3) = \frac{1}{\log_{3}(1/3)} = \frac{1}{-1} = -1 \] Thus, \[ \log_{(1/3)}(3) = -1 \] ### Step 8: Final calculation Now substituting back: \[ -\frac{1}{2} \cdot (-1) = \frac{1}{2} \] ### Final Answer The value of the expression is: \[ \frac{1}{2} \] ---

To solve the problem, we will break it down step by step. ### Step 1: Rewrite the expression We start with the expression: \[ \log_{(1/3)} \left( \sqrt[4]{729} \cdot \sqrt[3]{9^{-1} \cdot 27^{-4/3}} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.3|16 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.1|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

log_(1/3)sqrt(729*root(3)(9^(-1)*27^(-4/3))) is equal to

log_((1)/(3))sqrt(729*3sqrt(9^(-1)*27^(-(4)/(3)))) is equal to

Evaluate: root(3)(288root(3)(72root(3)(27)))

Find the value of the following log_(1//9)(27sqrt3)

Find the value of log_(2)(2(9)^((1)/(3))-2)+log_(2)(12(3)^((1)/(3))+4+4(9)^((1)/(3)))

Find the value of log_(2)(2.9^((1)/(3))-2)+log_(2)(12*((3^(1))/(3))+4+4*(9^((1)/(3)))

Find the value of log_(sqrt(3))((4cos^(2)9^(@)-1)(4cos^(2)27^(@)-1)(4cos^(2)81^(@)-1)(4cos^(2)243^(@)-1))

Find the value of log_(2)(2root(3)(9)-2)+log_(2)(12root(3)(3)+4+4root(3)(9))

Find the value of sqrt(2root(3)(4sqrt(2root(3)(4sqrt(2root(3)(4....)))))) .