Home
Class 12
MATHS
If y^2=xz and a^x=b^y=c^zthen prove that...

If `y^2=xz` and a^x=b^y=c^z`then prove that `log_b (a)= log_c (b)

Text Solution

Verified by Experts

`a^(x) = b^(y) = c^(z)`
` rArr x log a = y log b = z log c`
` :. y/x = z/y rArr(log a)/(log b) = (log b)/(log c)`
` rArr log_(b) a = log_(c) b`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If y^(2)=xz and a^(x)=b^(y)=c^(z), then prove that (log)_(a)b=(log)_(b)c

If y^(2)=xz and a^(^^)x=b^(^^)y=c^(^^)zthenprovet^(^^)log_(-)b(a)=log_(-)c(b)

If x,y,z are in G.P.and a^(x)=b^(y)=c^(z), then (a) log ba=log_(a)c(b)log_(c)b=log_(a)c(c)log_(b)a=log_(c)b(d) none of these

If x,y,z are in G.P.nad a^(x)=b^(y)=c^(z), then log_(b)a=log_(a)c b.log_(c)b=log_(a)c c.log_(b)a=log_(c)b d.none of these

a=y^(2),b=z^(2),c=x^(2) then prove that log_(a)x^(3)*log_(b)y^(3)*log_(c)z^(3)=(27)/(8)

if x^(2) + y^(2) = z^(2) then prove that log_(y)(z+x) + log_(y) (z-x)=2

If a^(x)=b^(y)=c^(z)=d^(w) then log_(a)(bcd)=

If a^(x)=b,b^(y)=c and c^(z)=a, prove that xyz=1