Home
Class 12
MATHS
Compute log(ab)(root(3)a//sqrtb)" if " ...

Compute ` log_(ab)(root(3)a//sqrtb)" if " log_(ab) a = 4`.

Text Solution

AI Generated Solution

The correct Answer is:
To compute \( \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) \) given that \( \log_{ab} a = 4 \), we can follow these steps: ### Step 1: Rewrite the logarithm using properties We can use the property of logarithms that states: \[ \log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y \] Thus, we can rewrite our expression as: \[ \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) = \log_{ab}(\sqrt[3]{a}) - \log_{ab}(\sqrt{b}) \] ### Step 2: Simplify each logarithm Next, we simplify each term: - For \( \log_{ab}(\sqrt[3]{a}) \): Using the property \( \log_b(x^n) = n \cdot \log_b(x) \), we have: \[ \log_{ab}(\sqrt[3]{a}) = \log_{ab}(a^{1/3}) = \frac{1}{3} \log_{ab} a \] - For \( \log_{ab}(\sqrt{b}) \): Similarly, we have: \[ \log_{ab}(\sqrt{b}) = \log_{ab}(b^{1/2}) = \frac{1}{2} \log_{ab} b \] ### Step 3: Substitute known values Now we substitute the known value \( \log_{ab} a = 4 \) into our expression: \[ \log_{ab}(\sqrt[3]{a}) = \frac{1}{3} \cdot 4 = \frac{4}{3} \] Next, we need to find \( \log_{ab} b \). We can use the change of base formula: \[ \log_{ab} b = \frac{\log b}{\log(ab)} = \frac{\log b}{\log a + \log b} \] ### Step 4: Find \( \log_{ab} b \) Since we don't have a specific value for \( \log b \), we can denote it as \( x \): \[ \log_{ab} b = \frac{x}{4 + x} \] ### Step 5: Combine the results Now we can combine the results: \[ \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) = \frac{4}{3} - \frac{1}{2} \cdot \frac{x}{4 + x} \] ### Step 6: Final expression Thus, the final expression for \( \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) \) is: \[ \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) = \frac{4}{3} - \frac{x}{2(4 + x)} \]

To compute \( \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) \) given that \( \log_{ab} a = 4 \), we can follow these steps: ### Step 1: Rewrite the logarithm using properties We can use the property of logarithms that states: \[ \log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y \] Thus, we can rewrite our expression as: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If log_(ab)a=4then log_(ab)((root(3)(a))/(sqrt(b)))=

If log_(a)(ab)=x then log_(b)(ab) is equals to

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

The value of (log_(a)(x))/(log_(ab)x)-log_(a)b

Compute a([(log_(b)(log_(b)N))/(log_(b)a)) Compute a((log_(b)(log_(b)N))/(log_(b)a))

the value of log_(a-b)(a^(3)-b^(3))-log_(a-b)(a^(2) +ab + b^(2)) is ______ . (a gt b)

Compute log_(6) 16 " if " log_(12) 27 = a