Home
Class 12
MATHS
If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b...

If `(logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b)` , then which of the following is/are true? `z y z=1` (b) `x^a y^b z^c=1` `x^(b+c)y^(c+b)=1` (d) `x y z=x^a y^b z^c`

A

` xyz = 1`

B

` x^(a)y^(b)z^(c) = 1`

C

` x^(b+c) y^(c+a) z^(a+b) = 1`

D

` xyz = x^(a) y^(b) z^(c)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

Let `(log_(k)x)/(b - c) = (log_(k)y)/(c-a) = (log_(k) z)/(a-b) = p`
` rArr x = k^(p(b-c)),y=k^(p(c-a)),z = k^(p(a-b))`
` rArrxyz = k^(p(b-c))k^(p(c-a))k^(p(a-b))`
` = k^(p(b-c)+p(c-a)+p(a-b))=k^(0) = 1`
`x^(a)y^(b)z^(c) = k^(pa(b-c))k^(pb(c-a))k^(pc(a-b))=k^(0)=1`
` x^(b+c)y^(c+a)z^(a+b) = k^(p(b+c)(b-c))k^(p(c+a)(c-a))k^(p(a+b)(a-b))`
` =k^(0) = 1`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Comprehension)|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Single)|50 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

underset equal to b-c=(log y)/(c-a)=(log z)/(a-b) then x^(a)y^(b)z^(c) is

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If (x)/((b-c)(b+c-2a))=(y)/((c-a)(c+a-2b))=(z)/((a-b)(a+b-2c)) then the value of (x+y+z) is :

3) If (a)/(x+y)=(b)/(y+z)=(c)/(z-x) ,then show that b=a+c.

If (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c) show that (b-c)x+(c-a)y+(a-b)z=0

If x=(b-c)(a-d),y=(c-a)(b-d),z=(a-b)(c-d) , then the what is x^(3)+y^(3)+z^(3) equal to?