Home
Class 12
MATHS
Solve x^((log)y x)=2a n dy^((log)x y)=16...

Solve `x^((log)_y x)=2a n dy^((log)_x y)=16`

A

` 2^(root(3)2)`

B

` 2 ^(root(3)4)`

C

` 2 ^(root(3)128)`

D

` 2 ^(root(3)16)`

Text Solution

Verified by Experts

The correct Answer is:
D

Let ` log_(y) x = 1`
Then ` x = y^(t)` …(1)
Now, ` x^(log_(y) x) =2` becomes
` x^(t) = 2`
`rArr x = 2^(1//t)` …(2)
And `y^(log_(x)y) = 16` becomes
` y^(1//t) = 2^(4)`
` rArr y = 2^(4//t)` ….(3)
Putting the values of x and y in (1), we get
` 2^(1//t) = 2^(4t^(2))`
` rArr 4t^(3) = 1`
` :. t = (1/4)^(1//3)` ....(4)
Using (4) and (2), we get ` x = (2)^((4)^(1//3)) = 2^(root(3)4)`
Using (4) and (3), we get ` y = (2)^((4)^(2//3)) = 2^(root(3)16)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Numerical)|18 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

Solve x^(log_(y)x)=2 and y^(log_(x)y)=16

Solve x(dy)/(dx)+y=y^(2)ln x

Solve y=(ln x)^((ln x)^((ln x))cdots^(oo))

solve x((dy)/(dx))=y(log y-log x+1)

Solve x(dy)/(dx)+2y=x^(2)log x

Solve (x log x ) ( dy)/(dx) + y = (2)/(x) log x .

If y=x^(log(log x)); then (dy)/(dx) is

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)