Home
Class 12
MATHS
2^((sqrt(loga(ab)^(1/4)+logb(ab)^(1/4))-...

`2^((sqrt(log_a(ab)^(1/4)+log_b(ab)^(1/4))-sqrt(log_a(b/a)^(1/4)+log_b(a/b)^(1/4)))sqrt(log_a(b))` =

A

1

B

2

C

` 2^(log_(a) b)`

D

` 2 ^(log_(b)a)`

Text Solution

Verified by Experts

We have
` E= 2^((sqrt(log_(a)root(4)(ab)+log_(b)root(4)(ab))-sqrt(log _(a)root(4)(b/a+log_(b)root(4)(a/b)))) sqrt(log_(a)b))`
` = 2^(1/2(sqrt(log_(a)ab+log_(b)ab-)sqrt(log_(a)b//a+log_(b)a//b))sqrt(log_(a)b))`
` = 2^(1/2(sqrt(2+log_(a)b+log_(b)a)-sqrt(log_(a)b+log_(b)a - 2))sqrt(log_(a)b))`
` = 2^(1/2(sqrt((log_(a)b)^(2)+2log_(a)b+1)-sqrt((log_(a)b)^(2)-2log_(a)b+1))`
` = 2^(1/2(sqrt((log_(a)b+1)^(2))-sqrt((log_(a)b-1)^(2)))`
` =2^(1/2(|log_(a)b+1|-|log_(a)b-1|)`
Case I:
` bgea gt1`
` rArr log_(a) b ge log_(a) a`
` rArr log_(a) b ge 1`
` rArrE=2^(1/2(log_(a)b+1-log_(a)b+1))=2`
Case II:
` 1 lt b lt a`
` rArr 0 lt log_(a) b lt log_(a) a`
` rArr 0 lt log_(a) b lt 1`
` rArr E = 2^(1/2(log_(a)b+1-1+log_(a)b))`
` = 2^(1//2.(2log_(a)b))`
` = 2 ^(log_(a)b)`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Numerical)|18 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos

Similar Questions

Explore conceptually related problems

(1)/(log_(a)(ab)+(1)/(log_(b)(ab)=1))

(1)/(log_(a)(ab))+(1)/(log_(b)(ab))=1

Prove that 2^{{sqrt(log_a 4sqrtab + log_b 4sqrtab)-sqrt((log_a)4sqrt(b/a)+log_b 4sqrt(a/b))}sqrt(log_a b))= { 2 , b gea gt1and 2^(log_b a) , 1 ltblta

Prove that: 2^(sqrt((log)_(a)4sqrt(ab)+(log)_(b)4sqrt(ab))-(log)_(a)4sqrt((b)/(a))+(log)_(b)4sqrt((pi)/(b)))sqrt((log)_(a)b)={2quad if b>=a>1 and 2^(log_(a)(b)) if 1

If log_(ab)a=4then log_(ab)((root(3)(a))/(sqrt(b)))=

Simplify: (1)/(1+log_(a)bc)+(1)/(1+log_(b)ca)+(1)/(1+log_(c)ab)

(1)/((log_(a)bc)+1)+(1)/((log_(b)ac)+1)+(1)/((log_(c)ab)+1) is equal to

If log_(a)(x)=p&log_(b)(x^(2))=q then log_(x)(sqrt(ab))