Home
Class 12
MATHS
Let Delta PQR be a triangle Let veca=...

Let `Delta PQR` be a triangle Let `veca=bar(QR),vecb=bar(RP)and vecc=bar(PQ)if |veca|=12,|vecb|=4 sqrt(3)and vecb.vecc=24,`then which of the following is (are ) true ?

A

`(|vecc|^(2))/(2)-|veca|=12`

B

`(|vecc|^(2))/(2)-|veca|=30`

C

`|vecaxxvecb+veccxxveca|=48sqrt(3)`

D

`veca.vecb=-72`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`a., c., d. veca+ vecb + vecc=0 `
` implies vecb+ vecc=-veca`
`implies |vecb|+ |vecc|^(2) +2cevb. vecc= |veca|^(2)`
`implies 48+ |vecc|^(2)+48=144`
`implies |vecc|^(2)=48`
`implies |vecc|= 4sqrt(3)`
`therefore ( |vecc|^(2))/(2) +|veca|=36`
futher ,
`veca+vecb=-vecc``implies |veca|^(2)+|vecb|+2veca.vecb=|vecc|^(2)`
` implies 144+48+2veca. vecb=48`
`:' veca+vecb+vecc=0`
`implies veca+vecb +c=0`
` therefore |vecaxxvecb+veccxxveca|`
`2 |vecaxxvecb|`
`= 2 sqrt(a^(2)b^(2)-(veca.vecb)^(2))`
`= 2sqrt((144)(48)-(72)^(2)= 48sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE|Exercise matching column type|2 Videos
  • JEE 2019

    CENGAGE|Exercise chapter -3 multiple correct answers type|2 Videos
  • JEE 2019

    CENGAGE|Exercise Integer Answer type|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Question Bank|24 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos

Similar Questions

Explore conceptually related problems

Let tianglePQR be a triangle . Let veca=overline(QR),vecb = overline(RP) and vecc= overline(PQ).if |veca|=12, |vecb|=4sqrt3and vecb.vecc= 24 then which of the following is (are) true ?

Let tianglePQR be a triangle . Let veca=overline(QR),vecb = overline(RP) and vecc= overline(PQ).if |veca|=12, |vecb|=4sqrt3and vecb.vecc= 24 then which of the following is (are) true ?

Let triangle PQR be a triangle. Let veca = vec(QR) , vecb = vec(RP) and vecc= vec(PQ) . " if " |veca| = 12, |vecb| = 4sqrt3 and vecb , vecc = 24 , then which of the following is ( are ) true ?

Let veca, vecb ,vecc be unit vetors such that veca + vecb + vecc = vec0 , which one of the following is correct ?

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

In a triangle PQR, "let: aveca= vecQR= vecb= vecRP and vec c= vecPQ . , If |veca|=3, |vecb|=4 and (veca. (vec c. vecb))/(vec. (veca- vecb))=(|veca|)/(|veca|+|vecb|) then the value of |vecaxx vecb|^(2) is _____

If veca, vecb and vecc are such that [veca vecb vecc] =1, vecc= lambda veca xx vecb , angle between veca and vecb is 2pi//3,|veca|=sqrt2 |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

The value of [(veca-vecb, vecb-vecc, vecc-veca)] , where |veca|=1, |vecb|=5, |vecc|=3 , is