Home
Class 11
MATHS
sinpi/10+sin(13pi)/(10)=?...

`sinpi/10+sin(13pi)/(10)=?`

A

1

B

`1/2`

C

`-1/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin\left(\frac{\pi}{10}\right) + \sin\left(\frac{13\pi}{10}\right) \), we can use the properties of the sine function and the sine addition formula. ### Step-by-Step Solution: 1. **Identify the angles**: We have two angles: - \( \frac{\pi}{10} \) - \( \frac{13\pi}{10} \) 2. **Use the sine function property**: We know that: \[ \sin(\theta + \pi) = -\sin(\theta) \] Therefore, we can rewrite \( \sin\left(\frac{13\pi}{10}\right) \): \[ \sin\left(\frac{13\pi}{10}\right) = \sin\left(\pi + \frac{3\pi}{10}\right) = -\sin\left(\frac{3\pi}{10}\right) \] 3. **Substituting back into the expression**: Now substitute this back into the original expression: \[ \sin\left(\frac{\pi}{10}\right) + \sin\left(\frac{13\pi}{10}\right) = \sin\left(\frac{\pi}{10}\right) - \sin\left(\frac{3\pi}{10}\right) \] 4. **Using the sine subtraction formula**: We can use the sine subtraction formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \] Here, let \( A = \frac{\pi}{10} \) and \( B = \frac{3\pi}{10} \). 5. **Calculate \( A + B \) and \( A - B \)**: - \( A + B = \frac{\pi}{10} + \frac{3\pi}{10} = \frac{4\pi}{10} = \frac{2\pi}{5} \) - \( A - B = \frac{\pi}{10} - \frac{3\pi}{10} = -\frac{2\pi}{10} = -\frac{\pi}{5} \) 6. **Substituting into the sine subtraction formula**: Now substitute these values into the formula: \[ \sin\left(\frac{\pi}{10}\right) - \sin\left(\frac{3\pi}{10}\right) = 2 \cos\left(\frac{2\pi}{5} \cdot \frac{1}{2}\right) \sin\left(-\frac{\pi}{5} \cdot \frac{1}{2}\right) \] Simplifying gives: \[ = 2 \cos\left(\frac{\pi}{5}\right) \sin\left(-\frac{\pi}{10}\right) \] Since \( \sin(-x) = -\sin(x) \): \[ = -2 \cos\left(\frac{\pi}{5}\right) \sin\left(\frac{\pi}{10}\right) \] 7. **Final Result**: Thus, the final result is: \[ \sin\left(\frac{\pi}{10}\right) + \sin\left(\frac{13\pi}{10}\right) = -2 \cos\left(\frac{\pi}{5}\right) \sin\left(\frac{\pi}{10}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3Q|21 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3O|12 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

Prove that 4sin(pi/10) sin((13pi)/10)=-1

Find the value of (a) sin(pi)/(10).sin(13pi)/(10) (b) cos^(2)48^(@)-sin^(2) 12^(@)

sin((pi)/(10))sin((3pi)/(10))=?

Prove that: sin(9pi)/(10) + sin(13pi)/(10)=-1/2

Prove that: (sin pi)/(10)+(sin(13 pi))/(10)=-(1)/(2)

Prove that: sin((pi)/(10))sin((13 pi)/(10))=-(1)/(4)

The value of sin""(pi)/(10)sin""(13pi)/(10) is

The value of sin((pi)/(10))sin((13 pi)/(10)) is

(sin((pi)/(10))+sin(13(pi)/(10)))(cos^(2)((pi)/(6))-cos^(2)((pi)/(10))) is equal to