Home
Class 11
MATHS
If sinx+sin^(2)x=1 ,then cos^(4)x+cos^(2...

If `sinx+sin^(2)x=1` ,then `cos^(4)x+cos^(2)x=?`

A

2

B

`-2`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \sin^2 x = 1 \) and find the value of \( \cos^4 x + \cos^2 x \), we can follow these steps: ### Step 1: Rearrange the given equation Starting with the equation: \[ \sin x + \sin^2 x = 1 \] we can rearrange it to isolate \( \sin^2 x \): \[ \sin^2 x = 1 - \sin x \] ### Step 2: Substitute \( \sin^2 x \) in terms of \( \cos^2 x \) Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \), we can express \( \cos^2 x \) in terms of \( \sin x \): \[ \cos^2 x = 1 - \sin^2 x \] Substituting \( \sin^2 x \) from the previous step: \[ \cos^2 x = 1 - (1 - \sin x) = \sin x \] ### Step 3: Substitute \( \cos^2 x \) back into the expression Now, we need to find \( \cos^4 x + \cos^2 x \): \[ \cos^4 x + \cos^2 x = (\cos^2 x)^2 + \cos^2 x \] Substituting \( \cos^2 x = \sin x \): \[ = (\sin x)^2 + \sin x = \sin^2 x + \sin x \] ### Step 4: Use the original equation From the original equation, we know: \[ \sin x + \sin^2 x = 1 \] Thus, we can substitute this back into our expression: \[ \cos^4 x + \cos^2 x = 1 \] ### Final Answer Therefore, the value of \( \cos^4 x + \cos^2 x \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3Q|21 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3O|12 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

If sin x+sin^(2)x=1 then cos^(2)x+cos^(4)x

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=

If 2sin x-cos2x=1 ,then (cos^(2)x+cos^(4)x+4)/(2) is equal to

If sin x+sin^(2)x=1, then the value of cos^(2)x+cos^(4)x+cot^(4)x-cot^(2)x is

If sin x+sin^(2)x=1 then the value of cos^(2)x+cos^(4)x+cot^(4)x-cot^(2)x is

If "sin" x + "sin"^(2) x = 1 show that: cos^(4)x + cos^(2)x = 1 (ii) If "sin" x + cos x =sqrt(2) cos x show that: sqrt2 sin x = cos x - sin x

if sin x+sin^(2)x=1, then the value of cos^(2)x+cos^(4)x is

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

NAGEEN PRAKASHAN-TRIGNOMETRIC FUNCTIONS-EXERCISES 3P
  1. If A+B=45^@ then (1+tanA)(1+tanB)=

    Text Solution

    |

  2. sin^(2)pi/8+sin^(2)(3pi)/(8)+sin^(2)(5pi)/(8)+sin^(2)(7pi)/(8)=?

    Text Solution

    |

  3. If sinx+sin^(2)x=1 ,then cos^(4)x+cos^(2)x=?

    Text Solution

    |

  4. If 4sin^(2)theta=3, then general value of theta is:

    Text Solution

    |

  5. If sin7theta=cos5 theta, then general value of theta is:

    Text Solution

    |

  6. If tan3theta=cottheta, then general value of theta is :

    Text Solution

    |

  7. Find the general value of theta from the equation tantheta+tan2theta+t...

    Text Solution

    |

  8. The solution of tantheta+cottheta=2 is:

    Text Solution

    |

  9. The solution of cos2theta=cos^(2)theta is:

    Text Solution

    |

  10. cottheta=-sqrt(3) and cosec theta=2

    Text Solution

    |

  11. Solve: 2sin^(2)theta+sin^(2)2theta=2

    Text Solution

    |

  12. If sqrt(3)sintheta-costheta=0, then one general value of theta is:

    Text Solution

    |

  13. In DeltaABC, a=12 m, angleB=30^(@) and angleC=90^(@), then area of Del...

    Text Solution

    |

  14. In DeltaABC, a=12 cm, angleB=30^(@) and angleC=90^(@), then area of De...

    Text Solution

    |

  15. In DeltaABC, cotA/2, cotB/2, cotC/2 are in A.P., then the true stateme...

    Text Solution

    |

  16. If a, b, c are in A.P then cot(A/2),cot(B/2),cot(C/2) are in

    Text Solution

    |

  17. In DeltaABC, a=9, b=8 and c=4, then 3cosB-6cosC=?

    Text Solution

    |

  18. In DeltaABC, If 1/(a+b)+1/(b+c)=3/(a+b+c), then angleB=?

    Text Solution

    |

  19. Prove that in triangleABC, a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3abc

    Text Solution

    |

  20. In DeltaABC, (b+c)/(11) = (c+a)/(12)=(a+b)/(13), prove that: cosA:co...

    Text Solution

    |