Home
Class 11
MATHS
The solution of costheta.cos2theta.cos3t...

The solution of `costheta.cos2theta.cos3theta=1/4,0 lt theta lt pi/4` is:

A

`pi/8`

B

`pi/6`

C

`pi/9`

D

`pi/12`

Text Solution

Verified by Experts

The correct Answer is:
a
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.2|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3P|32 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

Solve: costheta cos2theta cos3theta =(1)/(4)

If |[1+sin^2theta, cos^2 theta,4sin 2theta] , [sin^2theta, 1+cos^2theta,4sin2theta] , [sin^2theta,cos^2theta,4sin2theta-1]|=0 and 0 lt theta lt pi/2 then cos4theta=

Knowledge Check

  • The number of solutions of sin theta+2 sin 2 theta+3 sin 3 theta+4 sin 4theta=10,0 lt theta lt pi is

    A
    0
    B
    1
    C
    2
    D
    4
  • The number of solution of the equation sin theta cos theta cos 2 theta .cos 4theta =1/2 in the interval [0,pi]

    A
    0
    B
    8
    C
    9
    D
    10
  • Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

    A
    Both Statement I and Statement II are individually true and R is the correct explanation of Statement I.
    B
    Both Statement I and Statement II are individually true but Statement II is not the correct explanaton of Statement I.
    C
    Statement I is true but Statement II is false.
    D
    Statement I is false but Statement II is true.
  • Similar Questions

    Explore conceptually related problems

    If cos2 theta*cos3 theta*cos theta=(1)/(4) for 0

    The solution of (3sin theta-sin3 theta)/(1+cos theta)+(3cos theta+cos3 theta)/(1-sin theta)=4sqrt(2)cos(theta+(pi)/(4))

    The sum of all the solution of the equation cos theta cos ( pi/3 + theta) cos (pi/3 - theta) = 1/4, theta in [0, 6pi] is

    If z = (1+cos theta + i sin theta)/(sin theta + i(1+cos theta))(0 lt theta lt pi//2) then |z| equals

    If cosec theta - cot theta = 1/2, 0 lt theta lt pi/2, then cos theta is equal to