Home
Class 11
MATHS
2sin^(2)(3pi)/(4) + 2cos^(2)pi/4+2sec^(2...

`2sin^(2)(3pi)/(4) + 2cos^(2)pi/4+2sec^(2)pi/3=10`

Text Solution

AI Generated Solution

To solve the equation \(2\sin^2\left(\frac{3\pi}{4}\right) + 2\cos^2\left(\frac{\pi}{4}\right) + 2\sec^2\left(\frac{\pi}{3}\right) = 10\), we will evaluate each term step by step. ### Step 1: Evaluate \( \sin^2\left(\frac{3\pi}{4}\right) \) Using the identity \( \sin\left(\pi - x\right) = \sin x \), we can write: \[ \sin\left(\frac{3\pi}{4}\right) = \sin\left(\pi - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.4|8 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.2|10 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: i) cos120^(@)sin390^(@)+cos330^(@)cos150^(@) ii) sin^(2)(3pi)/(4)+cos^(2)pi/4+sec^(2)pi/3

Prove that: 2sin^(2)(3(pi)/(4))+2cos^(2)((pi)/(4))+2sec^(2)((pi)/(3))=10

2sin^(2)quad (3 pi)/(4)+2cos^(2)(pi)/(4)+2sec^(2)(pi)/(3)=10

Prove that (i) " tan"^(2) .(pi)/(3) + 2cos^(2) .(pi)/(4)+ 3 sec^(2).(pi)/(6)+ 4 cos^(2).(pi)/(2)=8 (ii) " sin ".(pi)/(6) " cos 0 + sin ".(pi)/(4) " cos " .(pi)(4) + " sin " .(pi)/(3) "cos " .(pi)/(6) =(7)/(4) (iii) " 4sin " (pi)/(6) " sin"^(2) (pi)/(3) + 3 " cos " .(pi)/(3) " tan ".(pi)/(4) = " cosec"^(2).(pi)/(2)=4

sin((3pi)/(2)-pi/4)

Value of expression sin^(2)(pi)/(6)+cos^(2)(pi)/(4)-sec(pi)/(3) is

The value of (tan^(2))(pi)/(3)+4(cos^(2))(pi)/(4)+3(sec^(2))(pi)/(6)+(cot^(2))(pi)/(2) is

sin^(2)(pi)/(4)+sin^(2)(3 pi)/(4)+sin^(2)(5 pi)/(4)+sin^(2)(7 pi)/(4)=2

tan^(2)\ (pi)/(3)+2csc^(2)\ (pi)/(4)+3sec^(2)\ (pi)/(6)=11

Prove that (a) sin^(2)(pi/6) + cos^(2)( pi/3) - tan^(2)(pi/4) = -1/2 (b) sin((8pi)/3) cos((23pi)/6) + cos((13pi)/3) sin((35pi)/6) = 1/2