Home
Class 11
MATHS
Prove that: s in" "x" "+" "s in" "3x" "+...

Prove that: `s in" "x" "+" "s in" "3x" "+" "s in" "5x" "+" "s in" "7x" "=" "4" "cos" "x" "cos" "2x" "s in" "4x`

Text Solution

Verified by Experts

LHS `=sinx+sin3x+sin5x+sin7x = (sin7x+sin5x)+(sin5x+sin3x)`
`=2sin(7x+x)/(2)cos(7x-x)/(2) + 2sin(5x+3x)/(2)cos(5x-3x)/(2)`
`=2sin4xcos3x+2sin4xcosx`
`=2sin4x(cos3x+cosx)`
`=2sin4x[2cos(3x+x)(2)cos(3x-x)/(2)]`
`=2sin4x[2cos2xcosx]`
`=4cosxcos2xsin4x`= RHS Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.4|8 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

Prove that sin x + sin 3x + sin 5x + sin 7x=4 sin 4x cos 2x cos x.

Prove that: (s in5x-2s in3x+s in x)/(cos5x-cos x)=tan x

Prove : (sin 7x +sin 3x)/(cos 7x+cos 3x) = tan 5x

Prove that: s in3x+s in2x-s in x=4s in x(cos x)/(2)(cos(3x))/(2)

Prove that: cos^(2)2x-cos^(2)6x=s in4xs in8x

Prove that: s in x+s in3x++sin(2n-1)x=(sin^(2)nx)/(s in x) for all n in N.

The number of distinct real roots of the equation |cosx s in x s in x s in x cos x s in x s in x s in x cos x|=0 in the interval [-\ pi/4,pi/4] is- a. 3 b. \ 4 c. \ 2 d. 1

Prove that: sin^(2)6x-sin^(2)4x=s in2xs in10x

Prove that: (cos9x-cos5x)/(s in17x-s in3x)=-(s in2x)/(cos10x)

Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x *cos 2x *cos 3x .