Home
Class 12
MATHS
Find all possible values of expressions ...

Find all possible values of expressions `(2+x^2)/(4-x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find all possible values of the expression \( \frac{2 + x^2}{4 - x^2} \), we will determine the range of this expression step by step. ### Step 1: Set the expression equal to \( y \) Let: \[ y = \frac{2 + x^2}{4 - x^2} \] ### Step 2: Rearrange the equation Multiply both sides by \( 4 - x^2 \) (assuming \( 4 - x^2 \neq 0 \)): \[ y(4 - x^2) = 2 + x^2 \] This simplifies to: \[ 4y - yx^2 = 2 + x^2 \] ### Step 3: Collect all terms involving \( x^2 \) Rearranging gives: \[ yx^2 + x^2 = 4y - 2 \] Factoring out \( x^2 \): \[ x^2(y + 1) = 4y - 2 \] ### Step 4: Solve for \( x^2 \) Thus, we can express \( x^2 \) as: \[ x^2 = \frac{4y - 2}{y + 1} \] ### Step 5: Determine the conditions for \( x^2 \) Since \( x^2 \) must be non-negative (i.e., \( x^2 \geq 0 \)), we need: \[ \frac{4y - 2}{y + 1} \geq 0 \] ### Step 6: Analyze the inequality The fraction \( \frac{4y - 2}{y + 1} \) is non-negative when both the numerator and denominator are either both positive or both negative. 1. **Numerator**: \( 4y - 2 \geq 0 \) implies \( y \geq \frac{1}{2} \). 2. **Denominator**: \( y + 1 > 0 \) implies \( y > -1 \). ### Step 7: Determine intervals - For \( y \geq \frac{1}{2} \), the denominator \( y + 1 \) is always positive. - For \( y < \frac{1}{2} \), we check \( 4y - 2 < 0 \) which gives \( y < \frac{1}{2} \). Thus, the critical points are: - \( y = \frac{1}{2} \) (where the numerator is zero). - \( y = -1 \) (where the denominator is zero). ### Step 8: Combine results From our analysis: - The expression is non-negative when \( y \geq \frac{1}{2} \) and \( y > -1 \). - Therefore, the valid range of \( y \) is: \[ y \in \left[-1, \frac{1}{2}\right) \cup \left[\frac{1}{2}, \infty\right) \] ### Final Result The possible values of the expression \( \frac{2 + x^2}{4 - x^2} \) are: \[ (-\infty, -1) \cup \left[\frac{1}{2}, \infty\right) \]

To find all possible values of the expression \( \frac{2 + x^2}{4 - x^2} \), we will determine the range of this expression step by step. ### Step 1: Set the expression equal to \( y \) Let: \[ y = \frac{2 + x^2}{4 - x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.3|13 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.4|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.1|12 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|36 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

Find all possible values of expression sqrt(1-sqrt(x^(2)-6x+9)).

Find all possible values of the following expressions : (i) sqrt(x^(2)-4) (ii) sqrt(9-x^(2)) (iii) sqrt(x^(2)-2x+10)

Find all the possible values of following expressions : (i) ( |x|)/(x) + (|y|)/y (ii) |x|/x+|y|/y+|z|/z

Find all possible values of (x^(2)+1)/(x^(2)-2)

Let x be a positive real.Find the maximum possible value of the expression y=(x^(2)+2-sqrt(x^(4)+4))/(x)

Find all the possible values of f(x) =(1-x^2)/(x^2+3)

If x in R - {0} then minimum possible value of the expression (1)/(7)[(3x^(2)+(4)/(3x^(2))+1)^(2)-2(3x^(2)+(4)/(3x^(2)))+4]

For x>=0, the smallest possible value of the expression,log_(2)(x^(3)-4x^(2)+x+26)-log_(2)(x+2) is ( A ) 1(B) 2(C)5(D) None of these

Find all possible values of 'a' for which the expression (x^(2)-7x+5)/(5x^(2)-7x+a) may be capable of all values,x being any real quantity

Find all the possible values of the following expressions: (1)/(x^(2)+2)( ii) (1)/(x^(2)-2x+3)( iii) (1)/(x^(2)-x-1)