Home
Class 12
MATHS
int(0)^(pi//4)(2sec^(2)x+x^(3)+2)dx...

`int_(0)^(pi//4)(2sec^(2)x+x^(3)+2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{4}} (2 \sec^2 x + x^3 + 2) \, dx \), we can break it down into three separate integrals: 1. \( \int_{0}^{\frac{\pi}{4}} 2 \sec^2 x \, dx \) 2. \( \int_{0}^{\frac{\pi}{4}} x^3 \, dx \) 3. \( \int_{0}^{\frac{\pi}{4}} 2 \, dx \) Now, let's solve each of these integrals step by step. ### Step 1: Integrate \( 2 \sec^2 x \) The integral of \( \sec^2 x \) is \( \tan x \). Therefore, \[ \int 2 \sec^2 x \, dx = 2 \tan x + C \] Now we evaluate it from \( 0 \) to \( \frac{\pi}{4} \): \[ \left[ 2 \tan x \right]_{0}^{\frac{\pi}{4}} = 2 \tan\left(\frac{\pi}{4}\right) - 2 \tan(0) = 2 \cdot 1 - 2 \cdot 0 = 2 \] ### Step 2: Integrate \( x^3 \) The integral of \( x^3 \) is given by: \[ \int x^3 \, dx = \frac{x^4}{4} + C \] Now we evaluate it from \( 0 \) to \( \frac{\pi}{4} \): \[ \left[ \frac{x^4}{4} \right]_{0}^{\frac{\pi}{4}} = \frac{\left(\frac{\pi}{4}\right)^4}{4} - \frac{0^4}{4} = \frac{\frac{\pi^4}{256}}{4} = \frac{\pi^4}{1024} \] ### Step 3: Integrate \( 2 \) The integral of \( 2 \) is: \[ \int 2 \, dx = 2x + C \] Now we evaluate it from \( 0 \) to \( \frac{\pi}{4} \): \[ \left[ 2x \right]_{0}^{\frac{\pi}{4}} = 2 \cdot \frac{\pi}{4} - 2 \cdot 0 = \frac{\pi}{2} \] ### Step 4: Combine the results Now, we combine the results of the three integrals: \[ \int_{0}^{\frac{\pi}{4}} (2 \sec^2 x + x^3 + 2) \, dx = 2 + \frac{\pi^4}{1024} + \frac{\pi}{2} \] Thus, the final answer is: \[ \int_{0}^{\frac{\pi}{4}} (2 \sec^2 x + x^3 + 2) \, dx = 2 + \frac{\pi^4}{1024} + \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(2sec^(2)x+x^(3)+2)dx

int_(0)^(pi//4) x sec^(2)xdx =

int_(0)^(pi//4) sec^(4) x" dx =

int_(0)^(pi//4)x sec^(2)x " " dx =

Evaluate the following : int_(0)^(pi//4)(sec^(2)x)/(tan^(2)x+4 tanx+1)dx

Evaluate the following : int_(0)^(pi//4)x sec^(2)xdx

Evaluate : int_(0)^((pi)/(4)) sec^(2) x dx

int_(pi//6)^(pi//4)(sec^(2)x+cos^(2)x)dx=

int_(0)^(pi//4) sec^(4) x " " dx =

int_(0)^(pi//8) (sec^(2) 2x)/2 dx is equal to