Home
Class 12
MATHS
int(0)^(pi)(x)/(1+sinx)dx....

`int_(0)^(pi)(x)/(1+sinx)dx`.

Text Solution

Verified by Experts

The correct Answer is:
`pi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi)(dx)/(1+sinx)

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

Consider I = int_(0)^(pi) (xdx)/(1+sinx) What is int_(0)^(pi)((pi-x)dx)/(1+sinx) equal to ?

Consider I = int_(0)^(pi) (xdx)/(1+sinx) What is int_(0)^(pi) (dx)/(1+sinx) equal to ?

int_(0)^(pi)(dx)/((1+sinx))=?

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

Evaluate int_(0)^(pi//4)(dx)/(1+sinx)

int_(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)/(2)-1)

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

int_(0)^(pi//2)(x)/(sinx+cosx)dx .