Home
Class 12
MATHS
int(0)^(oo)((ln(1+x^(2)))/(1+x^(2)))dx....

`int_(0)^(oo)((ln(1+x^(2)))/(1+x^(2)))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2} \, dx, \] we will use the substitution \( x = \tan \theta \). This gives us \( dx = \sec^2 \theta \, d\theta \) and transforms the limits of integration: when \( x = 0 \), \( \theta = 0 \) and when \( x = \infty \), \( \theta = \frac{\pi}{2} \). ### Step 1: Change of Variables Substituting \( x = \tan \theta \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\ln(1+\tan^2 \theta)}{1+\tan^2 \theta} \sec^2 \theta \, d\theta. \] Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we can simplify the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\ln(\sec^2 \theta)}{\sec^2 \theta} \sec^2 \theta \, d\theta = \int_{0}^{\frac{\pi}{2}} \ln(\sec^2 \theta) \, d\theta. \] ### Step 2: Simplifying the Integral We know that \( \ln(\sec^2 \theta) = 2 \ln(\sec \theta) \), so we can rewrite the integral: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \ln(\sec \theta) \, d\theta. \] ### Step 3: Evaluating the Integral The integral \( \int_{0}^{\frac{\pi}{2}} \ln(\sec \theta) \, d\theta \) can be evaluated using the known result: \[ \int_{0}^{\frac{\pi}{2}} \ln(\sec \theta) \, d\theta = -\frac{\pi}{2} \ln(2). \] Thus, \[ I = 2 \left(-\frac{\pi}{2} \ln(2)\right) = -\pi \ln(2). \] ### Final Result Therefore, the value of the integral is: \[ \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2} \, dx = -\pi \ln(2). \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(log(1+x^(2)))/(1+x^(2))dx=

int_(0)^(1)ln(1+x^(2))*dx

int_(0)^(oo)((1)/(x^(2)+1))dx

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

If int_(0)^(1)((1-x^(2))/(1+x^(2)+x^(4)))dx=a ln b, then

Evaluate int_(0)^(a)((log(1+ax))/(1+x^(2))dx)

int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

int_(0)^(1)(x^(2)ln x)/(sqrt(1-x^(2)))dx