Home
Class 12
MATHS
int(0)^(oo)((tan^(-1)x)/(x(1+x^(2))))dx...

`int_(0)^(oo)((tan^(-1)x)/(x(1+x^(2))))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\infty} \frac{\tan^{-1} x}{x(1+x^2)} \, dx, \] we can use the substitution \( x = \tan \theta \). This gives us \( dx = \sec^2 \theta \, d\theta \) and transforms the limits as follows: when \( x = 0 \), \( \theta = 0 \); when \( x \to \infty \), \( \theta \to \frac{\pi}{2} \). Now substituting these into the integral: 1. **Substituting \( x = \tan \theta \)**: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^{-1}(\tan \theta)}{\tan \theta (1 + \tan^2 \theta)} \sec^2 \theta \, d\theta. \] 2. **Simplifying \( \tan^{-1}(\tan \theta) \)**: Since \( \tan^{-1}(\tan \theta) = \theta \) for \( \theta \in [0, \frac{\pi}{2}] \), we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\theta}{\tan \theta (1 + \tan^2 \theta)} \sec^2 \theta \, d\theta. \] 3. **Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \)**: Thus, the integral simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\theta \sec^2 \theta}{\tan \theta \sec^2 \theta} \, d\theta = \int_{0}^{\frac{\pi}{2}} \frac{\theta}{\tan \theta} \, d\theta. \] 4. **Expressing \( \frac{1}{\tan \theta} \)**: We know that \( \frac{1}{\tan \theta} = \cot \theta \): \[ I = \int_{0}^{\frac{\pi}{2}} \theta \cot \theta \, d\theta. \] 5. **Applying Integration by Parts**: Let \( u = \theta \) and \( dv = \cot \theta \, d\theta \). Then \( du = d\theta \) and \( v = \ln(\sin \theta) \): \[ I = \left[ \theta \ln(\sin \theta) \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \ln(\sin \theta) \, d\theta. \] 6. **Evaluating the boundary term**: At \( \theta = \frac{\pi}{2} \), \( \sin(\frac{\pi}{2}) = 1 \) and \( \ln(1) = 0 \). At \( \theta = 0 \), \( \theta \ln(\sin \theta) \to 0 \) (using L'Hôpital's Rule). Thus, the boundary term evaluates to 0. 7. **Final integral**: Therefore, we have: \[ I = -\int_{0}^{\frac{\pi}{2}} \ln(\sin \theta) \, d\theta. \] 8. **Using known results**: It is known that: \[ \int_{0}^{\frac{\pi}{2}} \ln(\sin \theta) \, d\theta = -\frac{\pi}{2} \ln(2). \] Thus, we find: \[ I = -\left(-\frac{\pi}{2} \ln(2)\right) = \frac{\pi}{2} \ln(2). \] So, the final answer is: \[ \int_{0}^{\infty} \frac{\tan^{-1} x}{x(1+x^2)} \, dx = \frac{\pi}{2} \ln(2). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

2int_(0)^(1)(tan^(-1)x)/(x)dx=

Evaluate: int_(0)^(1)(x tan^(-1)x)/((1+x^(2))^(3/2))dx

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

int_(0)^(1)x cos(tan^(-1)x)dx

int_(0)^(oo)((ln(1+x^(2)))/(1+x^(2)))dx .

int_(0)^(oo)(1)/(x+a)dx