Home
Class 12
MATHS
int(-1)^(41//2)e^(2x-[2x])dx, where [*] ...

`int_(-1)^(41//2)e^(2x-[2x])dx`, where `[*]` denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-1}^{\frac{41}{2}} e^{2x - [2x]} \, dx, \] where \([2x]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Rewrite the integrand Using the property of the greatest integer function, we can express \( [2x] \) as: \[ [2x] = 2x - \{2x\}, \] where \(\{2x\}\) is the fractional part of \(2x\). Thus, we can rewrite the integrand: \[ e^{2x - [2x]} = e^{2x - (2x - \{2x\})} = e^{\{2x\}}. \] So, the integral becomes: \[ I = \int_{-1}^{\frac{41}{2}} e^{\{2x\}} \, dx. \] ### Step 2: Change of variable To simplify the integral, we can perform a substitution. Let: \[ t = 2x \implies dx = \frac{dt}{2}. \] We also need to change the limits of integration. When \(x = -1\), \(t = 2(-1) = -2\), and when \(x = \frac{41}{2}\), \(t = 2 \cdot \frac{41}{2} = 41\). Thus, the integral becomes: \[ I = \int_{-2}^{41} e^{\{t\}} \cdot \frac{dt}{2} = \frac{1}{2} \int_{-2}^{41} e^{\{t\}} \, dt. \] ### Step 3: Evaluate the integral The function \(\{t\}\) has a period of 1, meaning it repeats every integer. Therefore, we can split the integral into segments from \(-2\) to \(41\): \[ \int_{-2}^{41} e^{\{t\}} \, dt = \int_{-2}^{-1} e^{\{t\}} \, dt + \int_{-1}^{0} e^{\{t\}} \, dt + \sum_{n=0}^{40} \int_{n}^{n+1} e^{\{t\}} \, dt. \] ### Step 4: Calculate each segment 1. **From \(-2\) to \(-1\)**: - Here, \(\{t\} = t + 2\) (since \(t\) is in the range \([-2, -1)\)): \[ \int_{-2}^{-1} e^{\{t\}} \, dt = \int_{-2}^{-1} e^{t + 2} \, dt = e^2 \int_{-2}^{-1} e^t \, dt = e^2 \left[e^t\right]_{-2}^{-1} = e^2 \left(e^{-1} - e^{-2}\right) = e^2 \left(\frac{1}{e} - \frac{1}{e^2}\right) = e^2 \left(\frac{e-1}{e^2}\right) = e - 1. \] 2. **From \(-1\) to \(0\)**: - Here, \(\{t\} = t + 1\): \[ \int_{-1}^{0} e^{\{t\}} \, dt = \int_{-1}^{0} e^{t + 1} \, dt = e \int_{-1}^{0} e^t \, dt = e \left[e^t\right]_{-1}^{0} = e \left(1 - \frac{1}{e}\right) = e - 1. \] 3. **From \(0\) to \(41\)**: - Each integral from \(n\) to \(n+1\) where \(n\) is an integer contributes the same value: \[ \int_{n}^{n+1} e^{\{t\}} \, dt = \int_{0}^{1} e^{t} \, dt = [e^t]_{0}^{1} = e - 1. \] - There are \(41\) such intervals (from \(0\) to \(40\)), thus: \[ \sum_{n=0}^{40} \int_{n}^{n+1} e^{\{t\}} \, dt = 41(e - 1). \] ### Step 5: Combine all parts Now, we can combine all parts: \[ \int_{-2}^{41} e^{\{t\}} \, dt = (e - 1) + (e - 1) + 41(e - 1) = 2(e - 1) + 41(e - 1) = 43(e - 1). \] ### Final Step: Multiply by \(\frac{1}{2}\) Finally, we multiply by \(\frac{1}{2}\): \[ I = \frac{1}{2} \cdot 43(e - 1) = \frac{43}{2}(e - 1). \] Thus, the final answer is: \[ \boxed{\frac{43}{2}(e - 1)}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

Find the value of : int_(0)^(10)e^(2x-[2x])d(x-[x]) where [.] denotes the greatest integer function).

The value of int_(-1)^(1)(x-[x])dx , (where [.] denotes greatest integer function)is

Evaluate: int_(0)^(2)[x^(2)-x+1]dx, where [.] denotos the greatest integer function.

If f(x)=[2x], where [.] denotes the greatest integer function,then

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

int_(1)^(2)([x^(2)]-[x]^(2))dx where [.] ldenotes the greatest integer function is equal to

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

int_(0)^(5)e^([x])dx is (where [.] denotes the greatest integer function)

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

int_(-1)^(1)[x^(2)-x+1]dx, where [.] denotes thegreatest integer function,is equal to