Home
Class 12
MATHS
int(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx...

`int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\pi}^{\frac{3\pi}{2}} \left(\sin^4 x + \cos^4 x\right) \, dx, \] we can start by rewriting \(\sin^4 x + \cos^4 x\) using the identity for the sum of squares: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x. \] Since \(\sin^2 x + \cos^2 x = 1\), we have: \[ \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x. \] Using the double angle identity, we can express \(\sin^2 x \cos^2 x\) as: \[ \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x). \] Thus, we can rewrite our integral as: \[ I = \int_{\pi}^{\frac{3\pi}{2}} \left(1 - \frac{1}{2} \sin^2(2x)\right) \, dx. \] Now, we can separate the integral: \[ I = \int_{\pi}^{\frac{3\pi}{2}} 1 \, dx - \frac{1}{2} \int_{\pi}^{\frac{3\pi}{2}} \sin^2(2x) \, dx. \] Calculating the first integral: \[ \int_{\pi}^{\frac{3\pi}{2}} 1 \, dx = \left[x\right]_{\pi}^{\frac{3\pi}{2}} = \frac{3\pi}{2} - \pi = \frac{\pi}{2}. \] Next, we need to compute the second integral, \(\int_{\pi}^{\frac{3\pi}{2}} \sin^2(2x) \, dx\). We can use the identity: \[ \sin^2(2x) = \frac{1 - \cos(4x)}{2}. \] Thus, \[ \int_{\pi}^{\frac{3\pi}{2}} \sin^2(2x) \, dx = \int_{\pi}^{\frac{3\pi}{2}} \frac{1 - \cos(4x)}{2} \, dx = \frac{1}{2} \int_{\pi}^{\frac{3\pi}{2}} 1 \, dx - \frac{1}{2} \int_{\pi}^{\frac{3\pi}{2}} \cos(4x) \, dx. \] Calculating the first part again: \[ \frac{1}{2} \int_{\pi}^{\frac{3\pi}{2}} 1 \, dx = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}. \] Now for the second part: \[ \int_{\pi}^{\frac{3\pi}{2}} \cos(4x) \, dx = \left[\frac{\sin(4x)}{4}\right]_{\pi}^{\frac{3\pi}{2}} = \frac{\sin(6\pi)}{4} - \frac{\sin(4\pi)}{4} = 0 - 0 = 0. \] Thus, \[ \int_{\pi}^{\frac{3\pi}{2}} \sin^2(2x) \, dx = \frac{\pi}{4} - 0 = \frac{\pi}{4}. \] Now substituting back into our expression for \(I\): \[ I = \frac{\pi}{2} - \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{8} = \frac{4\pi}{8} - \frac{\pi}{8} = \frac{3\pi}{8}. \] Thus, the final answer is: \[ \boxed{\frac{3\pi}{8}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

What is int_(-pi/6)^(pi/6) (sin^(5)x cos^(3)x)/(x^(4)) dx equal to ?

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(-pi)^(pi)sin^(2)x.cos^(2)x dx=

int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x + cos^(4)x)dx=

Evaluate the following : int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

If I=int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx, then the value of I is

Evaluate int_(0)^((pi)/(2))((sin^(4)x)/(sin^(4)x+cos^(4)x))dx

int_(0)^( pi/2)(sin2x)/(sin^(4)x+cos^(4)x)backslash dx