Home
Class 12
MATHS
int(pi//2)^(0)sin^(11)xdx...

`int_(pi//2)^(0)sin^(11)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin^{11} x \, dx \), we will use the properties of definite integrals and the reduction formula for sine integrals. ### Step 1: Change the limits of integration Using the property of definite integrals, if we change the limits of integration, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \sin^{11} x \, dx = -\int_{\frac{\pi}{2}}^{0} \sin^{11} x \, dx \] This means that if we reverse the limits, the integral changes its sign. ### Step 2: Apply the reduction formula The reduction formula for the integral of sine raised to an odd power is given by: \[ \int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx \] For our case, we will use: \[ \int_{0}^{\frac{\pi}{2}} \sin^{11} x \, dx = \frac{10}{11} \int_{0}^{\frac{\pi}{2}} \sin^{9} x \, dx \] ### Step 3: Continue applying the reduction formula We will continue applying the reduction formula: \[ \int_{0}^{\frac{\pi}{2}} \sin^{9} x \, dx = \frac{8}{9} \int_{0}^{\frac{\pi}{2}} \sin^{7} x \, dx \] \[ \int_{0}^{\frac{\pi}{2}} \sin^{7} x \, dx = \frac{6}{7} \int_{0}^{\frac{\pi}{2}} \sin^{5} x \, dx \] \[ \int_{0}^{\frac{\pi}{2}} \sin^{5} x \, dx = \frac{4}{5} \int_{0}^{\frac{\pi}{2}} \sin^{3} x \, dx \] \[ \int_{0}^{\frac{\pi}{2}} \sin^{3} x \, dx = \frac{2}{3} \int_{0}^{\frac{\pi}{2}} \sin^{1} x \, dx \] \[ \int_{0}^{\frac{\pi}{2}} \sin^{1} x \, dx = 1 \] ### Step 4: Substitute back to find the integral Now we can substitute back to find \( I \): \[ \int_{0}^{\frac{\pi}{2}} \sin^{3} x \, dx = \frac{2}{3} \cdot 1 = \frac{2}{3} \] \[ \int_{0}^{\frac{\pi}{2}} \sin^{5} x \, dx = \frac{4}{5} \cdot \frac{2}{3} = \frac{8}{15} \] \[ \int_{0}^{\frac{\pi}{2}} \sin^{7} x \, dx = \frac{6}{7} \cdot \frac{8}{15} = \frac{48}{105} \] \[ \int_{0}^{\frac{\pi}{2}} \sin^{9} x \, dx = \frac{8}{9} \cdot \frac{48}{105} = \frac{384}{945} \] \[ I = \frac{10}{11} \cdot \frac{384}{945} = \frac{3840}{10395} \] ### Final Answer Thus, the value of the integral \( I = \int_{0}^{\frac{\pi}{2}} \sin^{11} x \, dx \) is: \[ \boxed{\frac{3840}{10395}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

Show that int_(-pi//2)^(pi//2)sin^(7)xdx=0 .

int_(0)^(pi//2)(sin^(2)xdx)/((1+cosx)^(2))= ………

Prove the following : 0 lt int_(0)^(pi//2)sin^(n+1)xdx lt int_(0)^(pi//2)sin^(2)xdx, n gt 1

int_(0)^(pi//2)sin^(2)xdx=?

int_(0)^(pi//2)x^(3)sin3xdx

int_(-pi/2)^(pi/2)sin xdx

int_(0)^((pi)/(2))sin^(2)xdx

int_(-pi)^( pi)x sin^(2)xdx=

The value int_(0)^(pi//2) sin^(2)xdx will be :

Evaluate int_(0)^((pi)/(2))sin^(2)xdx

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. If int(0)^(x^(2)(1+x))f(t)dt = x then find f(2)

    Text Solution

    |

  2. Evaluate int(0)^(pi)ln(1+bcosx) dx, 'b' being parameter.

    Text Solution

    |

  3. int(pi//2)^(0)sin^(11)xdx

    Text Solution

    |

  4. int(0)^(-pi//2)sin^(5)xcos^(4)xdx

    Text Solution

    |

  5. int(0)^(1) x^(5)sin^(-1)xdx

    Text Solution

    |

  6. int(0)^(9) x(a^(2)-x^(2))^(7/2)dx

    Text Solution

    |

  7. int(0)^(2) sqrt(2-x)dx.

    Text Solution

    |

  8. Prove the following : int(0)^(1)e^(-x)cos^(2)xdx lt int(0)^(1)e^(-x^(2...

    Text Solution

    |

  9. Prove the following : 0 lt int(0)^(pi//2)sin^(n+1)xdx lt int(0)^(pi//2...

    Text Solution

    |

  10. Prove the following : e^(-(1)/(e)) lt int(0)^(1)x^(x)dx lt 1

    Text Solution

    |

  11. Prove the following: -1/2lt=int0^1(x^3cosx)/(2+x^2)dx<1/2

    Text Solution

    |

  12. Prove the following : 1 lt int(0)^(pi//2)sqrt(sinx)dx lt sqrt(pi/2)

    Text Solution

    |

  13. Prove the following : 4/pi lt int(pi/4)^(pi/3) (tanx)/(x) lt (3sqrt(3)...

    Text Solution

    |

  14. lim(nrarroo) {1/n+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+"......"+1/(...

    Text Solution

    |

  15. lim(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

    Text Solution

    |

  16. lim(nrarroo) [sin^(3)'(pi)/(4n)+2sin^(3)'(2pi)/(4n)+3sin^(3)'(3pi)/(4n...

    Text Solution

    |

  17. lim(nrarroo) sum(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

    Text Solution

    |

  18. lim(nrarroo) (tan'(pi)/(2n)tan'(2pi)/(2n)tan'(3n)/(2n)"......."tan'(np...

    Text Solution

    |

  19. Find the area bounded by the curves y = e^(x), y = |x-1| and x = 2.

    Text Solution

    |

  20. Complete the area of the region bounded by the parabolas y^(2)+8x=16 ...

    Text Solution

    |