Home
Class 12
MATHS
int(0)^(1) x^(5)sin^(-1)xdx...

`int_(0)^(1) x^(5)sin^(-1)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} x^5 \sin^{-1}(x) \, dx \), we will use integration by parts. The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \sin^{-1}(x) \) (thus \( du = \frac{1}{\sqrt{1-x^2}} \, dx \)) - \( dv = x^5 \, dx \) (thus \( v = \frac{x^6}{6} \)) ### Step 2: Apply the integration by parts formula Using the integration by parts formula, we have: \[ I = \left[ \sin^{-1}(x) \cdot \frac{x^6}{6} \right]_{0}^{1} - \int_{0}^{1} \frac{x^6}{6} \cdot \frac{1}{\sqrt{1-x^2}} \, dx \] ### Step 3: Evaluate the boundary term Now, we evaluate the boundary term: \[ \left[ \sin^{-1}(x) \cdot \frac{x^6}{6} \right]_{0}^{1} = \left( \sin^{-1}(1) \cdot \frac{1^6}{6} \right) - \left( \sin^{-1}(0) \cdot \frac{0^6}{6} \right) \] Calculating this gives: \[ = \left( \frac{\pi}{2} \cdot \frac{1}{6} \right) - (0) = \frac{\pi}{12} \] ### Step 4: Simplify the integral Now we need to simplify the integral: \[ I = \frac{\pi}{12} - \frac{1}{6} \int_{0}^{1} \frac{x^6}{\sqrt{1-x^2}} \, dx \] ### Step 5: Solve the integral \( \int_{0}^{1} \frac{x^6}{\sqrt{1-x^2}} \, dx \) To solve this integral, we can use the substitution \( x = \sin(t) \), which gives \( dx = \cos(t) \, dt \) and changes the limits from \( 0 \) to \( \frac{\pi}{2} \): \[ \int_{0}^{1} \frac{x^6}{\sqrt{1-x^2}} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{\sin^6(t)}{\sqrt{1-\sin^2(t)}} \cos(t) \, dt = \int_{0}^{\frac{\pi}{2}} \sin^6(t) \, dt \] ### Step 6: Evaluate \( \int_{0}^{\frac{\pi}{2}} \sin^6(t) \, dt \) Using the reduction formula or known results, we find: \[ \int_{0}^{\frac{\pi}{2}} \sin^n(t) \, dt = \frac{(n-1)!!}{n!!} \cdot \frac{\pi}{2} \] For \( n = 6 \): \[ \int_{0}^{\frac{\pi}{2}} \sin^6(t) \, dt = \frac{5!!}{6!!} \cdot \frac{\pi}{2} = \frac{15}{48} \cdot \frac{\pi}{2} = \frac{15\pi}{96} \] ### Step 7: Substitute back into the expression for \( I \) Now substituting this back into our expression for \( I \): \[ I = \frac{\pi}{12} - \frac{1}{6} \cdot \frac{15\pi}{96} \] Calculating the second term: \[ = \frac{\pi}{12} - \frac{15\pi}{576} = \frac{48\pi}{576} - \frac{15\pi}{576} = \frac{33\pi}{576} = \frac{11\pi}{192} \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{11\pi}{192}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x^(2)sin^(-1)xdx

int_(0)^(1)x^(6)sin^(-1)xdx

Evaluate int_(0)^(1)x^(2)sin^(-1)xdx

The value of int_(0)^(1)x^(6)sin^(-1)xdx=

Evaluate : (i) int_(0)^(1)sin^(-1)xdx , (ii) int_(1)^(2)(lnx)/(x^(2))dx , (iii) int_(0)^(1)x^(2)sin^(-1)xdx .

Evaluate : (i) int_(0)^(1)sin^(-1)xdx , (ii) int_(1)^(2)(lnx)/(x^(2))dx , (iii) int_(0)^(1)x^(2)sin^(-1)xdx .

int_(0)^(1)x^(2)tan^(-1)xdx

Evaluate the following : int_(0)^(1)x^(3)tan^(-1)xdx

int x^(2)sin^(-1)xdx

int_(0)^(1)x sin^(-1)xdx

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. int(pi//2)^(0)sin^(11)xdx

    Text Solution

    |

  2. int(0)^(-pi//2)sin^(5)xcos^(4)xdx

    Text Solution

    |

  3. int(0)^(1) x^(5)sin^(-1)xdx

    Text Solution

    |

  4. int(0)^(9) x(a^(2)-x^(2))^(7/2)dx

    Text Solution

    |

  5. int(0)^(2) sqrt(2-x)dx.

    Text Solution

    |

  6. Prove the following : int(0)^(1)e^(-x)cos^(2)xdx lt int(0)^(1)e^(-x^(2...

    Text Solution

    |

  7. Prove the following : 0 lt int(0)^(pi//2)sin^(n+1)xdx lt int(0)^(pi//2...

    Text Solution

    |

  8. Prove the following : e^(-(1)/(e)) lt int(0)^(1)x^(x)dx lt 1

    Text Solution

    |

  9. Prove the following: -1/2lt=int0^1(x^3cosx)/(2+x^2)dx<1/2

    Text Solution

    |

  10. Prove the following : 1 lt int(0)^(pi//2)sqrt(sinx)dx lt sqrt(pi/2)

    Text Solution

    |

  11. Prove the following : 4/pi lt int(pi/4)^(pi/3) (tanx)/(x) lt (3sqrt(3)...

    Text Solution

    |

  12. lim(nrarroo) {1/n+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+"......"+1/(...

    Text Solution

    |

  13. lim(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

    Text Solution

    |

  14. lim(nrarroo) [sin^(3)'(pi)/(4n)+2sin^(3)'(2pi)/(4n)+3sin^(3)'(3pi)/(4n...

    Text Solution

    |

  15. lim(nrarroo) sum(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

    Text Solution

    |

  16. lim(nrarroo) (tan'(pi)/(2n)tan'(2pi)/(2n)tan'(3n)/(2n)"......."tan'(np...

    Text Solution

    |

  17. Find the area bounded by the curves y = e^(x), y = |x-1| and x = 2.

    Text Solution

    |

  18. Complete the area of the region bounded by the parabolas y^(2)+8x=16 ...

    Text Solution

    |

  19. Find the area between the x-axis and the curve y = sqrt(1+cos4x), 0 ...

    Text Solution

    |

  20. What is geometrical significance of (i) int(0)^(pi) |cosx| dx, (ii) ...

    Text Solution

    |