Home
Class 12
MATHS
int(0)^(2) sqrt(2-x)dx....

`int_(0)^(2) sqrt(2-x)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{2} \sqrt{2 - x} \, dx \), we will follow these steps: ### Step 1: Substitution Let's use the substitution \( u = 2 - x \). Then, we have: \[ du = -dx \quad \text{or} \quad dx = -du \] When \( x = 0 \), \( u = 2 \) and when \( x = 2 \), \( u = 0 \). Thus, the limits of integration change from \( 0 \) to \( 2 \) to \( 2 \) to \( 0 \). ### Step 2: Rewrite the Integral Substituting into the integral, we get: \[ \int_{0}^{2} \sqrt{2 - x} \, dx = \int_{2}^{0} \sqrt{u} \, (-du) = \int_{0}^{2} \sqrt{u} \, du \] ### Step 3: Evaluate the Integral Now, we can evaluate the integral: \[ \int \sqrt{u} \, du = \int u^{1/2} \, du = \frac{u^{3/2}}{3/2} = \frac{2}{3} u^{3/2} \] Now, we apply the limits from \( 0 \) to \( 2 \): \[ \left[ \frac{2}{3} u^{3/2} \right]_{0}^{2} = \frac{2}{3} (2^{3/2}) - \frac{2}{3} (0^{3/2}) = \frac{2}{3} \cdot 2\sqrt{2} - 0 = \frac{4\sqrt{2}}{3} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{2} \sqrt{2 - x} \, dx \) is: \[ \frac{4\sqrt{2}}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise High Level Problem|37 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_(0)^(2)x sqrt(2-x)dx

int_(0)^(2)x sqrt(2-x)dx=16(sqrt(2))/(15)

int_(0)^(2)x sqrt(x+2)dx

I=int_(0)^(2)x sqrt(x+2)dx

int_(0)^(2)x sqrt(x+2)*dx

int_(0)^(2)x^(2)sqrt(2-x)dx

Evaluate :int_(0)^(2)sqrt(4-x^(2))dx

Evaluate int_0^sqrt(2)sqrt(2-x^2)dx

int_(0)^(2) sqrt((2+x)/(2-x)) dx

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. int(0)^(1) x^(5)sin^(-1)xdx

    Text Solution

    |

  2. int(0)^(9) x(a^(2)-x^(2))^(7/2)dx

    Text Solution

    |

  3. int(0)^(2) sqrt(2-x)dx.

    Text Solution

    |

  4. Prove the following : int(0)^(1)e^(-x)cos^(2)xdx lt int(0)^(1)e^(-x^(2...

    Text Solution

    |

  5. Prove the following : 0 lt int(0)^(pi//2)sin^(n+1)xdx lt int(0)^(pi//2...

    Text Solution

    |

  6. Prove the following : e^(-(1)/(e)) lt int(0)^(1)x^(x)dx lt 1

    Text Solution

    |

  7. Prove the following: -1/2lt=int0^1(x^3cosx)/(2+x^2)dx<1/2

    Text Solution

    |

  8. Prove the following : 1 lt int(0)^(pi//2)sqrt(sinx)dx lt sqrt(pi/2)

    Text Solution

    |

  9. Prove the following : 4/pi lt int(pi/4)^(pi/3) (tanx)/(x) lt (3sqrt(3)...

    Text Solution

    |

  10. lim(nrarroo) {1/n+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+"......"+1/(...

    Text Solution

    |

  11. lim(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

    Text Solution

    |

  12. lim(nrarroo) [sin^(3)'(pi)/(4n)+2sin^(3)'(2pi)/(4n)+3sin^(3)'(3pi)/(4n...

    Text Solution

    |

  13. lim(nrarroo) sum(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

    Text Solution

    |

  14. lim(nrarroo) (tan'(pi)/(2n)tan'(2pi)/(2n)tan'(3n)/(2n)"......."tan'(np...

    Text Solution

    |

  15. Find the area bounded by the curves y = e^(x), y = |x-1| and x = 2.

    Text Solution

    |

  16. Complete the area of the region bounded by the parabolas y^(2)+8x=16 ...

    Text Solution

    |

  17. Find the area between the x-axis and the curve y = sqrt(1+cos4x), 0 ...

    Text Solution

    |

  18. What is geometrical significance of (i) int(0)^(pi) |cosx| dx, (ii) ...

    Text Solution

    |

  19. Find the area of the region bounded by the x-axis and the curves defi...

    Text Solution

    |

  20. Find the area bounded by the curves x = y^(2) and x = 3-2y^(2).

    Text Solution

    |