Home
Class 12
MATHS
Evaluate : (i) int(0)^(1) (xtan^(-1)x)...

Evaluate :
(i) `int_(0)^(1) (xtan^(-1)x)/((1+x^(2))^(3//2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{1} \frac{x \tan^{-1}(x)}{(1+x^2)^{3/2}} \, dx, \] we will use the substitution \( t = \tan^{-1}(x) \). ### Step-by-Step Solution: **Step 1: Substitution** Let \( t = \tan^{-1}(x) \). Then, we have: \[ x = \tan(t) \quad \text{and} \quad dx = \frac{1}{1+x^2} \, dt. \] Also, note that \( 1 + x^2 = 1 + \tan^2(t) = \sec^2(t) \). **Step 2: Change of Limits** When \( x = 0 \), \( t = \tan^{-1}(0) = 0 \). When \( x = 1 \), \( t = \tan^{-1}(1) = \frac{\pi}{4} \). **Step 3: Substitute in the Integral** Now, substituting these into the integral, we get: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\tan(t) \cdot t}{(\sec^2(t))^{3/2}} \cdot \frac{1}{\sec^2(t)} \, dt. \] **Step 4: Simplify the Integral** The term \( (\sec^2(t))^{3/2} = \sec^3(t) \), thus: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\tan(t) \cdot t}{\sec^3(t)} \cdot \frac{1}{\sec^2(t)} \, dt = \int_{0}^{\frac{\pi}{4}} t \sin(t) \cos(t) \, dt. \] **Step 5: Use Integration by Parts** Let \( u = t \) and \( dv = \sin(t) \cos(t) \, dt \). Then, \( du = dt \) and \( v = \frac{1}{2} \sin^2(t) \). Using integration by parts: \[ I = \left[ u v \right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} v \, du. \] Evaluating the first term: \[ \left[ t \cdot \frac{1}{2} \sin^2(t) \right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} \cdot \frac{\pi}{4} \cdot \left( \sin^2\left(\frac{\pi}{4}\right) \right) - 0 = \frac{\pi}{8}. \] **Step 6: Evaluate the Remaining Integral** Now we need to evaluate: \[ \int_{0}^{\frac{\pi}{4}} \frac{1}{2} \sin^2(t) \, dt. \] Using the identity \( \sin^2(t) = \frac{1 - \cos(2t)}{2} \): \[ \int_{0}^{\frac{\pi}{4}} \frac{1}{2} \sin^2(t) \, dt = \frac{1}{4} \int_{0}^{\frac{\pi}{4}} (1 - \cos(2t)) \, dt = \frac{1}{4} \left[ t - \frac{1}{2} \sin(2t) \right]_{0}^{\frac{\pi}{4}}. \] Evaluating this gives: \[ = \frac{1}{4} \left( \frac{\pi}{4} - 0 - \frac{1}{2} \left( \sin\left(\frac{\pi}{2}\right) - \sin(0) \right) \right) = \frac{1}{4} \left( \frac{\pi}{4} - \frac{1}{2} \right). \] **Final Calculation: Combine Results** Combining both parts: \[ I = \frac{\pi}{8} - \frac{1}{4} \left( \frac{\pi}{4} - \frac{1}{2} \right) = \frac{\pi}{8} - \frac{\pi}{16} + \frac{1}{8} = \frac{2\pi}{16} - \frac{\pi}{16} + \frac{2}{16} = \frac{\pi + 2}{16}. \] Thus, the final answer is: \[ I = \frac{\pi + 2}{16}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-III|2 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Self practive problem|56 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(sqrt3)(xtan^(-1)x)/((1+x^(2))^(3//2))dx

Evaluate: int_(0)^(1)(x tan^(-1)x)/((1+x^(2))^(3/2))dx

Evaluate: int_(0)^(1)x(tan^(-1)x)^(2)dx

int(xtan^-1x)/(1+x^2)^(3/2)dx

int(xtan^(-1)x^(2))/((1+x^(4)))dx

Evaluate : int_(0)^(1) (x^(2))/(1+x^(6)) dx

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

Evaluate : int_(1)^(2)(x^(3)-1)/(x^(2))dx

Evaluate :int_(0)^(1)x log(1+2x)dx

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1
  1. Evaluate : (i) int(0)^(1)sin^(-1)xdx , (ii) int(1)^(2)(lnx)/(x^(2))d...

    Text Solution

    |

  2. Evaluate : (i) int(0)^(1)sin^(-1)xdx , (ii) int(1)^(2)(lnx)/(x^(2))d...

    Text Solution

    |

  3. Evaluate : (i) int(0)^(1) (xtan^(-1)x)/((1+x^(2))^(3//2))dx

    Text Solution

    |

  4. Evaluate : (ii) int(0)^(1) (x)/(1+sqrt(x))dx

    Text Solution

    |

  5. Evaluate : (i) Find the value a such int(0)^(a)(1)/(e^(x)+4e^(x)+5)d...

    Text Solution

    |

  6. Let f(x) = ln ((1-sinx)/(1+sinx)), then show that int(a)^(b) f(x)dx =...

    Text Solution

    |

  7. Evaluate : (i) int(0)^(2)[x]^(2) dx (where [*] denotes greatest in...

    Text Solution

    |

  8. Evaluate : (i) int(-pi//2)^(pi//2)(g(x)-g(-x))/(f(-x)+f(x))

    Text Solution

    |

  9. Evaluate : (i) int(0)^(2pi) {sin(sinx)+sin(cosx)}dx

    Text Solution

    |

  10. Evaluate : (i) int(0)^(2pi) {sin(sinx)+sin(cosx)}dx

    Text Solution

    |

  11. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  12. If f(x) is a function defined AA x in R and f(x) + f(-x) = 0 AA x in [...

    Text Solution

    |

  13. (i) if f(x) = 5^(g(x)) and g(x) = int(2)^(x^(2))(t)/(ln(1+t^(2))) dt, ...

    Text Solution

    |

  14. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  15. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  16. lim(n to oo)n^2*int(1/(n+1))^(1/n)(tan^(-1)(nx)/sin^(-1)(nx)dx) is equ...

    Text Solution

    |

  17. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  18. Evaluate : int(0)^(pi)xsin^(5)xdx

    Text Solution

    |

  19. Evaluate : Lim(nrarroo) 3/n[1+sqrt((n)/(n+3))+sqrt((n)/(n+6))+sqrt((n...

    Text Solution

    |

  20. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = - 1,...

    Text Solution

    |