Home
Class 12
MATHS
Evaluate : (ii) int(0)^(1) (x)/(1+sqrt(...

Evaluate :
(ii) `int_(0)^(1) (x)/(1+sqrt(x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{1} \frac{x}{1+\sqrt{x}} \, dx \), we can use substitution. Let's follow the steps to solve this integral. ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] Differentiating both sides gives: \[ dx = 2t \, dt \] ### Step 2: Change the limits When \( x = 0 \): \[ t = \sqrt{0} = 0 \] When \( x = 1 \): \[ t = \sqrt{1} = 1 \] So, the limits of integration change from \( x = 0 \) to \( x = 1 \) to \( t = 0 \) to \( t = 1 \). ### Step 3: Substitute in the integral Now substitute \( x \) and \( dx \) in the integral: \[ \int_{0}^{1} \frac{x}{1+\sqrt{x}} \, dx = \int_{0}^{1} \frac{t^2}{1+t} \cdot 2t \, dt \] This simplifies to: \[ = 2 \int_{0}^{1} \frac{t^3}{1+t} \, dt \] ### Step 4: Simplifying the integral Now we can simplify the integrand: \[ \frac{t^3}{1+t} = t^3 \cdot \frac{1}{1+t} \] We can split this into two parts: \[ = t^3 - \frac{t^3}{1+t} \] Thus, we rewrite the integral: \[ = 2 \left( \int_{0}^{1} t^3 \, dt - \int_{0}^{1} \frac{t^3}{1+t} \, dt \right) \] ### Step 5: Evaluate the first integral The first integral is straightforward: \[ \int_{0}^{1} t^3 \, dt = \left[ \frac{t^4}{4} \right]_{0}^{1} = \frac{1}{4} \] ### Step 6: Evaluate the second integral Now we need to evaluate \( \int_{0}^{1} \frac{t^3}{1+t} \, dt \). We can use polynomial long division or a series expansion, but here we can also use the formula for the integral: \[ \int \frac{t^n}{1+t} \, dt = t^n - \int \frac{t^{n-1}}{1+t} \, dt \] For \( n = 3 \): \[ \int_{0}^{1} \frac{t^3}{1+t} \, dt = \int_{0}^{1} t^3 \, dt - \int_{0}^{1} \frac{t^2}{1+t} \, dt \] We already calculated \( \int_{0}^{1} t^3 \, dt = \frac{1}{4} \). ### Step 7: Evaluate \( \int_{0}^{1} \frac{t^2}{1+t} \, dt \) Using the same method: \[ \int_{0}^{1} \frac{t^2}{1+t} \, dt = \int_{0}^{1} t^2 \, dt - \int_{0}^{1} \frac{t}{1+t} \, dt \] Calculating \( \int_{0}^{1} t^2 \, dt = \frac{1}{3} \). ### Step 8: Combine results Now we can combine our results: \[ \int_{0}^{1} \frac{t^3}{1+t} \, dt = \frac{1}{4} - \left( \frac{1}{3} - \int_{0}^{1} \frac{t}{1+t} \, dt \right) \] The integral \( \int_{0}^{1} \frac{t}{1+t} \, dt \) can be calculated as: \[ = \int_{0}^{1} (1 - \frac{1}{1+t}) \, dt = 1 - \log(2) \] ### Final Calculation Putting it all together: \[ 2 \left( \frac{1}{4} - \left( \frac{1}{3} - (1 - \log(2)) \right) \right) \] This simplifies to: \[ = 2 \left( \frac{1}{4} - \frac{1}{3} + 1 - \log(2) \right) \] Calculating this gives: \[ = 2 \left( \frac{3}{12} - \frac{4}{12} + \frac{12}{12} - \log(2) \right) = 2 \left( \frac{11}{12} - \log(2) \right) = \frac{22}{12} - 2\log(2) = \frac{11}{6} - 2\log(2) \] Thus, the final answer is: \[ \frac{11}{6} - 2\log(2) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-III|2 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Self practive problem|56 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) int_(0)^(1//2)(dx)/(sqrt(1-x)) (ii) int_(0)^(1)((1-x)/(1+x))dx

Evaluate : int_(0)^(1) (x)/(sqrt(1+x^(2)))dx

Evaluate : int_(0)^(1) (-1)/(sqrt(1-x^(2)) )dx

Evaluate : int_(0)^(1)(e^(sqrt(x)))/(sqrt(x))dx

Evaluate : int_(0)^(9) (1)/(1+sqrt(x))dx

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

int_(0)^(1) (dx)/(sqrt(1+x)sqrt(x))=

Evaluate : (i) int_(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx , (ii) int_(0)^(1)x cos(tan^(1)x)dx

Evaluate: int_(0)^(1)(1)/(1+x+sqrt(x))dx

Evaluate: (i) int((1+sqrt(x))^(2))/(sqrt(x))dx (ii) int sqrt(1+e^(x))e^(x)dx

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1
  1. Evaluate : (i) int(0)^(1)sin^(-1)xdx , (ii) int(1)^(2)(lnx)/(x^(2))d...

    Text Solution

    |

  2. Evaluate : (i) int(0)^(1) (xtan^(-1)x)/((1+x^(2))^(3//2))dx

    Text Solution

    |

  3. Evaluate : (ii) int(0)^(1) (x)/(1+sqrt(x))dx

    Text Solution

    |

  4. Evaluate : (i) Find the value a such int(0)^(a)(1)/(e^(x)+4e^(x)+5)d...

    Text Solution

    |

  5. Let f(x) = ln ((1-sinx)/(1+sinx)), then show that int(a)^(b) f(x)dx =...

    Text Solution

    |

  6. Evaluate : (i) int(0)^(2)[x]^(2) dx (where [*] denotes greatest in...

    Text Solution

    |

  7. Evaluate : (i) int(-pi//2)^(pi//2)(g(x)-g(-x))/(f(-x)+f(x))

    Text Solution

    |

  8. Evaluate : (i) int(0)^(2pi) {sin(sinx)+sin(cosx)}dx

    Text Solution

    |

  9. Evaluate : (i) int(0)^(2pi) {sin(sinx)+sin(cosx)}dx

    Text Solution

    |

  10. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  11. If f(x) is a function defined AA x in R and f(x) + f(-x) = 0 AA x in [...

    Text Solution

    |

  12. (i) if f(x) = 5^(g(x)) and g(x) = int(2)^(x^(2))(t)/(ln(1+t^(2))) dt, ...

    Text Solution

    |

  13. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  14. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  15. lim(n to oo)n^2*int(1/(n+1))^(1/n)(tan^(-1)(nx)/sin^(-1)(nx)dx) is equ...

    Text Solution

    |

  16. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  17. Evaluate : int(0)^(pi)xsin^(5)xdx

    Text Solution

    |

  18. Evaluate : Lim(nrarroo) 3/n[1+sqrt((n)/(n+3))+sqrt((n)/(n+6))+sqrt((n...

    Text Solution

    |

  19. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = - 1,...

    Text Solution

    |

  20. (i) Find the area bounded by x^(2)+y^(2)-2x=0 and y = sin'(pix)/(2) in...

    Text Solution

    |