Home
Class 12
MATHS
Evaluate : (i) Find the value a such i...

Evaluate :
(i) Find the value a such `int_(0)^(a)(1)/(e^(x)+4e^(x)+5)dx = ln 3sqrt(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral and find the value of \( a \) such that \[ \int_{0}^{a} \frac{1}{e^{x} + 4e^{x} + 5} \, dx = \ln(3\sqrt{2}), \] we will follow these steps: ### Step 1: Simplify the Denominator The denominator can be rewritten as: \[ e^{x} + 4e^{x} + 5 = 5e^{x} + 5 = 5(e^{x} + 1). \] ### Step 2: Rewrite the Integral Now, the integral becomes: \[ \int_{0}^{a} \frac{1}{5(e^{x} + 1)} \, dx = \frac{1}{5} \int_{0}^{a} \frac{1}{e^{x} + 1} \, dx. \] ### Step 3: Evaluate the Integral The integral \( \int \frac{1}{e^{x} + 1} \, dx \) can be computed using the substitution \( u = e^{x} \), which gives \( du = e^{x} \, dx \) or \( dx = \frac{du}{u} \). The limits change accordingly from \( x = 0 \) to \( x = a \): - When \( x = 0 \), \( u = e^{0} = 1 \). - When \( x = a \), \( u = e^{a} \). Thus, we have: \[ \int_{0}^{a} \frac{1}{e^{x} + 1} \, dx = \int_{1}^{e^{a}} \frac{1}{u + 1} \cdot \frac{du}{u} = \int_{1}^{e^{a}} \frac{1}{u(u + 1)} \, du. \] ### Step 4: Partial Fraction Decomposition We can decompose \( \frac{1}{u(u + 1)} \) as follows: \[ \frac{1}{u(u + 1)} = \frac{A}{u} + \frac{B}{u + 1}. \] Multiplying through by \( u(u + 1) \) gives: \[ 1 = A(u + 1) + Bu. \] Setting \( u = 0 \) gives \( A = 1 \). Setting \( u = -1 \) gives \( B = -1 \). Thus: \[ \frac{1}{u(u + 1)} = \frac{1}{u} - \frac{1}{u + 1}. \] ### Step 5: Integrate Now we can integrate: \[ \int_{1}^{e^{a}} \left( \frac{1}{u} - \frac{1}{u + 1} \right) \, du = \left[ \ln |u| - \ln |u + 1| \right]_{1}^{e^{a}}. \] Calculating this gives: \[ \left( \ln(e^{a}) - \ln(e^{a} + 1) \right) - \left( \ln(1) - \ln(2) \right) = a - \ln(e^{a} + 1) + \ln(2). \] ### Step 6: Substitute Back Now substituting back into our integral: \[ \frac{1}{5} \left( a - \ln(e^{a} + 1) + \ln(2) \right) = \ln(3\sqrt{2}). \] ### Step 7: Solve for \( a \) Multiplying both sides by 5 gives: \[ a - \ln(e^{a} + 1) + \ln(2) = 5\ln(3\sqrt{2}). \] This simplifies to: \[ a - \ln(e^{a} + 1) = 5\ln(3\sqrt{2}) - \ln(2). \] ### Step 8: Final Rearrangement Rearranging gives: \[ a - \ln(e^{a} + 1) = 5\ln(3) + 5\ln(\sqrt{2}) - \ln(2) = 5\ln(3) + \frac{5}{2}\ln(2) - \ln(2) = 5\ln(3) + 2\ln(2). \] ### Step 9: Conclusion Now we can solve this equation numerically or graphically to find the value of \( a \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-III|2 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Self practive problem|56 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int_(1)^(e )(1)/(x sqrt(log x))dx=

6.Evaluate int_(0)^(1)(e^(x)+x^(e))dx

Evaluate the integrals : I = int_(0)^(1) (e^(x))/( 1 + e^(2x)) dx ,

Evaluate :int(e^(x))/(sqrt(5-4e^(x)-e^(2x)))dx

Evaluate: int_(0)^(1)(e^(x))/(sqrt(e^(x)-1))dx

Evaluate : int_(0) ^(1)(e^(x))/(sqrt(e^x-1))dx

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

Evaluate: (i) int xe^(x)^^2dx (ii) int(e^(2x))/(1+e^(x))dx

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1
  1. Evaluate : (i) int(0)^(1) (xtan^(-1)x)/((1+x^(2))^(3//2))dx

    Text Solution

    |

  2. Evaluate : (ii) int(0)^(1) (x)/(1+sqrt(x))dx

    Text Solution

    |

  3. Evaluate : (i) Find the value a such int(0)^(a)(1)/(e^(x)+4e^(x)+5)d...

    Text Solution

    |

  4. Let f(x) = ln ((1-sinx)/(1+sinx)), then show that int(a)^(b) f(x)dx =...

    Text Solution

    |

  5. Evaluate : (i) int(0)^(2)[x]^(2) dx (where [*] denotes greatest in...

    Text Solution

    |

  6. Evaluate : (i) int(-pi//2)^(pi//2)(g(x)-g(-x))/(f(-x)+f(x))

    Text Solution

    |

  7. Evaluate : (i) int(0)^(2pi) {sin(sinx)+sin(cosx)}dx

    Text Solution

    |

  8. Evaluate : (i) int(0)^(2pi) {sin(sinx)+sin(cosx)}dx

    Text Solution

    |

  9. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  10. If f(x) is a function defined AA x in R and f(x) + f(-x) = 0 AA x in [...

    Text Solution

    |

  11. (i) if f(x) = 5^(g(x)) and g(x) = int(2)^(x^(2))(t)/(ln(1+t^(2))) dt, ...

    Text Solution

    |

  12. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  13. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  14. lim(n to oo)n^2*int(1/(n+1))^(1/n)(tan^(-1)(nx)/sin^(-1)(nx)dx) is equ...

    Text Solution

    |

  15. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  16. Evaluate : int(0)^(pi)xsin^(5)xdx

    Text Solution

    |

  17. Evaluate : Lim(nrarroo) 3/n[1+sqrt((n)/(n+3))+sqrt((n)/(n+6))+sqrt((n...

    Text Solution

    |

  18. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = - 1,...

    Text Solution

    |

  19. (i) Find the area bounded by x^(2)+y^(2)-2x=0 and y = sin'(pix)/(2) in...

    Text Solution

    |

  20. Examples: Find the area of the region bounded by the curve y^2 = 2y - ...

    Text Solution

    |