Home
Class 12
MATHS
Evaluate : (i) int(0)^(2)[x]^(2) dx (w...

Evaluate :
(i) `int_(0)^(2)[x]^(2) dx` (where `[*]` denotes greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{2} [x^2] \, dx \), where \([x^2]\) denotes the greatest integer function (also known as the floor function), we will break the integral into segments based on the behavior of the function \([x^2]\) over the interval \([0, 2]\). ### Step 1: Determine the intervals for \([x^2]\) 1. For \(x \in [0, 1)\): - \(x^2 \in [0, 1)\) implies \([x^2] = 0\). 2. For \(x \in [1, \sqrt{2})\): - \(x^2 \in [1, 2)\) implies \([x^2] = 1\). 3. For \(x \in [\sqrt{2}, \sqrt{3})\): - \(x^2 \in [2, 3)\) implies \([x^2] = 2\). 4. For \(x \in [\sqrt{3}, 2]\): - \(x^2 \in [3, 4)\) implies \([x^2] = 3\). ### Step 2: Break the integral into segments We can now express the integral as a sum of integrals over these intervals: \[ \int_{0}^{2} [x^2] \, dx = \int_{0}^{1} [x^2] \, dx + \int_{1}^{\sqrt{2}} [x^2] \, dx + \int_{\sqrt{2}}^{\sqrt{3}} [x^2] \, dx + \int_{\sqrt{3}}^{2} [x^2] \, dx \] ### Step 3: Evaluate each integral 1. **First integral**: \[ \int_{0}^{1} [x^2] \, dx = \int_{0}^{1} 0 \, dx = 0 \] 2. **Second integral**: \[ \int_{1}^{\sqrt{2}} [x^2] \, dx = \int_{1}^{\sqrt{2}} 1 \, dx = [x]_{1}^{\sqrt{2}} = \sqrt{2} - 1 \] 3. **Third integral**: \[ \int_{\sqrt{2}}^{\sqrt{3}} [x^2] \, dx = \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx = 2[x]_{\sqrt{2}}^{\sqrt{3}} = 2(\sqrt{3} - \sqrt{2}) \] 4. **Fourth integral**: \[ \int_{\sqrt{3}}^{2} [x^2] \, dx = \int_{\sqrt{3}}^{2} 3 \, dx = 3[x]_{\sqrt{3}}^{2} = 3(2 - \sqrt{3}) \] ### Step 4: Combine the results Now we combine all the evaluated integrals: \[ \int_{0}^{2} [x^2] \, dx = 0 + (\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + 3(2 - \sqrt{3}) \] ### Step 5: Simplify the expression Combining all terms: \[ = \sqrt{2} - 1 + 2\sqrt{3} - 2\sqrt{2} + 6 - 3\sqrt{3} \] \[ = (6 - 1) + (\sqrt{2} - 2\sqrt{2}) + (2\sqrt{3} - 3\sqrt{3}) \] \[ = 5 - \sqrt{2} - \sqrt{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{2} [x^2] \, dx = 5 - \sqrt{2} - \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-III|2 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Self practive problem|56 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(5)e^([x])dx is (where [.] denotes the greatest integer function)

int_(0)^(4)x [x] dx= ( where [.] denotes greatest integer function

int_(0)^(10)[x^(2)]dx, where [.] denotes the greatest

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Evaluate: int_(-5)^(5)x^(2)[x+(1)/(2)]dx (where [.] denotes the greatest integer function).

The value of int_(0)^(2)[x^(2)-x+1]dx (where,[*] denotes the greatest integer function) is equal to

Evaluate: int_(0)^(2)[x^(2)-x+1]dx, where [.] denotos the greatest integer function.

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1
  1. Evaluate : (i) Find the value a such int(0)^(a)(1)/(e^(x)+4e^(x)+5)d...

    Text Solution

    |

  2. Let f(x) = ln ((1-sinx)/(1+sinx)), then show that int(a)^(b) f(x)dx =...

    Text Solution

    |

  3. Evaluate : (i) int(0)^(2)[x]^(2) dx (where [*] denotes greatest in...

    Text Solution

    |

  4. Evaluate : (i) int(-pi//2)^(pi//2)(g(x)-g(-x))/(f(-x)+f(x))

    Text Solution

    |

  5. Evaluate : (i) int(0)^(2pi) {sin(sinx)+sin(cosx)}dx

    Text Solution

    |

  6. Evaluate : (i) int(0)^(2pi) {sin(sinx)+sin(cosx)}dx

    Text Solution

    |

  7. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  8. If f(x) is a function defined AA x in R and f(x) + f(-x) = 0 AA x in [...

    Text Solution

    |

  9. (i) if f(x) = 5^(g(x)) and g(x) = int(2)^(x^(2))(t)/(ln(1+t^(2))) dt, ...

    Text Solution

    |

  10. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  11. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  12. lim(n to oo)n^2*int(1/(n+1))^(1/n)(tan^(-1)(nx)/sin^(-1)(nx)dx) is equ...

    Text Solution

    |

  13. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  14. Evaluate : int(0)^(pi)xsin^(5)xdx

    Text Solution

    |

  15. Evaluate : Lim(nrarroo) 3/n[1+sqrt((n)/(n+3))+sqrt((n)/(n+6))+sqrt((n...

    Text Solution

    |

  16. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = - 1,...

    Text Solution

    |

  17. (i) Find the area bounded by x^(2)+y^(2)-2x=0 and y = sin'(pix)/(2) in...

    Text Solution

    |

  18. Examples: Find the area of the region bounded by the curve y^2 = 2y - ...

    Text Solution

    |

  19. Find the area bounded by the y-axis and the curve x = e^(y) sin piy, ...

    Text Solution

    |

  20. The smaller area bounded by x^2/16+y^2/9=1 and the line 3x+4y=12 is

    Text Solution

    |