Home
Class 12
MATHS
Evaluate : (i) int(-pi//2)^(pi//2)(g(x)...

Evaluate : (i) `int_(-pi//2)^(pi//2)(g(x)-g(-x))/(f(-x)+f(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{g(x) - g(-x)}{f(-x) + f(x)} \, dx, \] we can use properties of definite integrals. ### Step 1: Change of Variables Let's first perform a change of variables in the integral. We can substitute \( x \) with \( -x \): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{g(-x) - g(x)}{f(x) + f(-x)} \, (-dx). \] This changes the limits of integration, but since the limits are symmetric about zero, we can rewrite it as: \[ I = -\int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \frac{g(-x) - g(x)}{f(x) + f(-x)} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{g(-x) - g(x)}{f(x) + f(-x)} \, dx. \] ### Step 2: Combine the Integrals Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{g(x) - g(-x)}{f(-x) + f(x)} \, dx \) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{g(-x) - g(x)}{f(x) + f(-x)} \, dx \) Adding these two equations gives us: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{g(x) - g(-x)}{f(-x) + f(x)} + \frac{g(-x) - g(x)}{f(x) + f(-x)} \right) \, dx. \] ### Step 3: Simplify the Expression Notice that the two fractions in the integral have the same denominator \( f(-x) + f(x) \). The numerators combine as follows: \[ g(x) - g(-x) + g(-x) - g(x) = 0. \] Thus, we have: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 0 \, dx = 0. \] ### Step 4: Solve for I From the equation \( 2I = 0 \), we can solve for \( I \): \[ I = 0. \] ### Final Answer Therefore, the value of the integral is \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{g(x) - g(-x)}{f(-x) + f(x)} \, dx = 0. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-II|55 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-III|2 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Self practive problem|56 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

Let f:R rarr R and g:R rarr R be continuous functions.Then the value of the integral int_((pi)/(2))^((pi)/(2))[f(x)+f(-x)][g(x)-g(-x)]dx is

f(x)=int_(0)^(x)g(t)log_(e)((1-t)/(1+t))dt ,where "g" is a continuous odd function. If int_(-pi/2)^( pi/2)(f(x)+(x^(2)cos x)/(1+e^(x)))dx=((pi)/(alpha))^(2)-alpha ,then alpha is equal to

Let f:R rarr and g:R rarr R be continuous function.Then the value of the integral int_(-(pi)/(2))^((pi)/(2))[f(x)+f(-x)][g(x)-g(-x)]dx is pi (b) 1(c)-1(d)0

Suppose that the function f,g,f', and g' are continuous over [0,1],g(x)!=0 for x in[0,1],f(0)=0,g(0)=pi,f(1)=(2015)/(2),g(1)=1 The value of int_(0)^(1)(f(x)g'(x)(g^(2)(x)-1)+f'(x)-g(x)(g^(2)(x)+1))/(g^(2)(x))dx is equal to

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertible for

Evaluate: if int g(x)dx=g(x), then int g(x){f(x)+f'(x)}dx

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1
  1. Let f(x) = ln ((1-sinx)/(1+sinx)), then show that int(a)^(b) f(x)dx =...

    Text Solution

    |

  2. Evaluate : (i) int(0)^(2)[x]^(2) dx (where [*] denotes greatest in...

    Text Solution

    |

  3. Evaluate : (i) int(-pi//2)^(pi//2)(g(x)-g(-x))/(f(-x)+f(x))

    Text Solution

    |

  4. Evaluate : (i) int(0)^(2pi) {sin(sinx)+sin(cosx)}dx

    Text Solution

    |

  5. Evaluate : (i) int(0)^(2pi) {sin(sinx)+sin(cosx)}dx

    Text Solution

    |

  6. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  7. If f(x) is a function defined AA x in R and f(x) + f(-x) = 0 AA x in [...

    Text Solution

    |

  8. (i) if f(x) = 5^(g(x)) and g(x) = int(2)^(x^(2))(t)/(ln(1+t^(2))) dt, ...

    Text Solution

    |

  9. The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overs...

    Text Solution

    |

  10. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  11. lim(n to oo)n^2*int(1/(n+1))^(1/n)(tan^(-1)(nx)/sin^(-1)(nx)dx) is equ...

    Text Solution

    |

  12. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  13. Evaluate : int(0)^(pi)xsin^(5)xdx

    Text Solution

    |

  14. Evaluate : Lim(nrarroo) 3/n[1+sqrt((n)/(n+3))+sqrt((n)/(n+6))+sqrt((n...

    Text Solution

    |

  15. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = - 1,...

    Text Solution

    |

  16. (i) Find the area bounded by x^(2)+y^(2)-2x=0 and y = sin'(pix)/(2) in...

    Text Solution

    |

  17. Examples: Find the area of the region bounded by the curve y^2 = 2y - ...

    Text Solution

    |

  18. Find the area bounded by the y-axis and the curve x = e^(y) sin piy, ...

    Text Solution

    |

  19. The smaller area bounded by x^2/16+y^2/9=1 and the line 3x+4y=12 is

    Text Solution

    |

  20. Compute the area of the figure bounded by the straight lines =0,x=2...

    Text Solution

    |