Home
Class 12
MATHS
int(0)^(pi)|1+2cosx| dx is equal to :...

`int_(0)^(pi)|1+2cosx|` dx is equal to :

A

`(2pi)/(3)`

B

`pi`

C

`2`

D

`(pi)/(3) + 2sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\pi} |1 + 2 \cos x| \, dx \), we need to analyze the expression inside the absolute value to determine where it is positive and where it is negative. ### Step 1: Determine where \( 1 + 2 \cos x \) is positive or negative The expression \( 1 + 2 \cos x \) can change sign depending on the value of \( \cos x \). We need to find the points where \( 1 + 2 \cos x = 0 \). \[ 1 + 2 \cos x = 0 \implies 2 \cos x = -1 \implies \cos x = -\frac{1}{2} \] The values of \( x \) where \( \cos x = -\frac{1}{2} \) in the interval \( [0, \pi] \) are: \[ x = \frac{2\pi}{3} \] ### Step 2: Split the integral at the point \( \frac{2\pi}{3} \) Now we can split the integral into two parts: \[ \int_{0}^{\pi} |1 + 2 \cos x| \, dx = \int_{0}^{\frac{2\pi}{3}} (1 + 2 \cos x) \, dx + \int_{\frac{2\pi}{3}}^{\pi} -(1 + 2 \cos x) \, dx \] ### Step 3: Evaluate the first integral \( \int_{0}^{\frac{2\pi}{3}} (1 + 2 \cos x) \, dx \) Now we compute the first integral: \[ \int_{0}^{\frac{2\pi}{3}} (1 + 2 \cos x) \, dx = \int_{0}^{\frac{2\pi}{3}} 1 \, dx + 2 \int_{0}^{\frac{2\pi}{3}} \cos x \, dx \] Calculating each part: 1. \( \int_{0}^{\frac{2\pi}{3}} 1 \, dx = \left[ x \right]_{0}^{\frac{2\pi}{3}} = \frac{2\pi}{3} - 0 = \frac{2\pi}{3} \) 2. \( \int_{0}^{\frac{2\pi}{3}} \cos x \, dx = \left[ \sin x \right]_{0}^{\frac{2\pi}{3}} = \sin\left(\frac{2\pi}{3}\right) - \sin(0) = \frac{\sqrt{3}}{2} - 0 = \frac{\sqrt{3}}{2} \) Thus, \[ 2 \int_{0}^{\frac{2\pi}{3}} \cos x \, dx = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \] Combining these results: \[ \int_{0}^{\frac{2\pi}{3}} (1 + 2 \cos x) \, dx = \frac{2\pi}{3} + \sqrt{3} \] ### Step 4: Evaluate the second integral \( \int_{\frac{2\pi}{3}}^{\pi} -(1 + 2 \cos x) \, dx \) Now we compute the second integral: \[ \int_{\frac{2\pi}{3}}^{\pi} -(1 + 2 \cos x) \, dx = -\left( \int_{\frac{2\pi}{3}}^{\pi} 1 \, dx + 2 \int_{\frac{2\pi}{3}}^{\pi} \cos x \, dx \right) \] Calculating each part: 1. \( \int_{\frac{2\pi}{3}}^{\pi} 1 \, dx = \left[ x \right]_{\frac{2\pi}{3}}^{\pi} = \pi - \frac{2\pi}{3} = \frac{\pi}{3} \) 2. \( \int_{\frac{2\pi}{3}}^{\pi} \cos x \, dx = \left[ \sin x \right]_{\frac{2\pi}{3}}^{\pi} = \sin(\pi) - \sin\left(\frac{2\pi}{3}\right) = 0 - \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{2} \) Thus, \[ 2 \int_{\frac{2\pi}{3}}^{\pi} \cos x \, dx = 2 \cdot \left(-\frac{\sqrt{3}}{2}\right) = -\sqrt{3} \] Combining these results: \[ \int_{\frac{2\pi}{3}}^{\pi} -(1 + 2 \cos x) \, dx = -\left( \frac{\pi}{3} - \sqrt{3} \right) = -\frac{\pi}{3} + \sqrt{3} \] ### Step 5: Combine both parts Now we combine both parts of the integral: \[ \int_{0}^{\pi} |1 + 2 \cos x| \, dx = \left( \frac{2\pi}{3} + \sqrt{3} \right) + \left( -\frac{\pi}{3} + \sqrt{3} \right) \] Simplifying this: \[ = \frac{2\pi}{3} - \frac{\pi}{3} + \sqrt{3} + \sqrt{3} = \frac{\pi}{3} + 2\sqrt{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{\pi} |1 + 2 \cos x| \, dx = \frac{\pi}{3} + 2\sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-III|2 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - 1|30 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi)|cosx-sinx|dx is equal to

int_(0)^(pi)|cosx|dx=?

int_(0)^(2pi)|cosx|dx=4

int_(0)^(pi/2) |sinx - cosx |dx is equal to

What is int_0^(pi//2) |sin x-cosx|dx equal to

int_(-pi/2)^(pi/2)cosx dx

int_(0)^(pi) (1)/(1+3^(cosx)) dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi//2)x cosx " " dx =

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1 Part-II
  1. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  2. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  3. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  4. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  5. int(0)^(oo)[2e^(-x)] dx. Where [*] denotes the greatest integer funct...

    Text Solution

    |

  6. int(lnpi-ln2)^(lnpi) (e^(-x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  7. If I(1)=int(n)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  8. int(0)^(pi//4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  9. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  10. If int(ln2)^(x)(dx)/(sqrt(e^(x)-1))= (pi)/(6), then x is equal to

    Text Solution

    |

  11. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  12. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  13. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  14. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  15. int(2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  16. int(-1)^(1)xln(1+e^(x))dx=

    Text Solution

    |

  17. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  18. The value of definite integral int0^(pi^2/4) dx/(1+sin^2 sqrtx+ cos^2 ...

    Text Solution

    |

  19. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |

  20. The value of the definite integral l = int(0)^(x)xsqrt(1+|cosx|) dx is...

    Text Solution

    |