Home
Class 12
MATHS
int(0)^(1)x^(2)(1-x)^(3)dx is equal to...

`int_(0)^(1)x^(2)(1-x)^(3)dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} x^{2} (1-x)^{3} \, dx \), we can follow these steps: ### Step 1: Expand the integrand First, we need to expand \( (1-x)^{3} \) using the binomial theorem: \[ (1-x)^{3} = 1 - 3x + 3x^{2} - x^{3} \] So, we can rewrite the integral as: \[ \int_{0}^{1} x^{2} (1 - 3x + 3x^{2} - x^{3}) \, dx \] ### Step 2: Distribute \( x^{2} \) Now, distribute \( x^{2} \) across the expanded polynomial: \[ \int_{0}^{1} (x^{2} - 3x^{3} + 3x^{4} - x^{5}) \, dx \] ### Step 3: Separate the integral We can separate the integral into individual terms: \[ \int_{0}^{1} x^{2} \, dx - 3 \int_{0}^{1} x^{3} \, dx + 3 \int_{0}^{1} x^{4} \, dx - \int_{0}^{1} x^{5} \, dx \] ### Step 4: Evaluate each integral Now we can evaluate each integral: 1. \( \int_{0}^{1} x^{2} \, dx = \left[ \frac{x^{3}}{3} \right]_{0}^{1} = \frac{1}{3} \) 2. \( \int_{0}^{1} x^{3} \, dx = \left[ \frac{x^{4}}{4} \right]_{0}^{1} = \frac{1}{4} \) 3. \( \int_{0}^{1} x^{4} \, dx = \left[ \frac{x^{5}}{5} \right]_{0}^{1} = \frac{1}{5} \) 4. \( \int_{0}^{1} x^{5} \, dx = \left[ \frac{x^{6}}{6} \right]_{0}^{1} = \frac{1}{6} \) ### Step 5: Substitute back into the expression Substituting these values back into our separated integrals: \[ \frac{1}{3} - 3 \cdot \frac{1}{4} + 3 \cdot \frac{1}{5} - \frac{1}{6} \] ### Step 6: Simplify the expression Now we need to simplify this expression. First, we find a common denominator, which is 60: \[ \frac{1}{3} = \frac{20}{60}, \quad -3 \cdot \frac{1}{4} = -\frac{45}{60}, \quad 3 \cdot \frac{1}{5} = \frac{36}{60}, \quad -\frac{1}{6} = -\frac{10}{60} \] Putting it all together: \[ \frac{20}{60} - \frac{45}{60} + \frac{36}{60} - \frac{10}{60} = \frac{20 - 45 + 36 - 10}{60} = \frac{1}{60} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{1} x^{2} (1-x)^{3} \, dx = \frac{1}{60} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1 Part-III|2 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - 1|30 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 1|31 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

int_(0)^(1) (x^(2))/(1+x^(2))dx is equal to

int_(0)^(1)(1-x^(7))^(2)dx is equal to

What is int_(0)^(1) x(1-x)^(n)dx equal to ?

What is int_(0)^(1)x (1-x)^(9) dx equal to ?

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int_(0)^(1)(dx)/(1+x+x^(2)) is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

int_(0)^(3)(x^(2)+1)dx

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1 Part-II
  1. f(x) = underset(1)overset(sinxcosy)int(y^(2)+y+1)dy, then

    Text Solution

    |

  2. int(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

    Text Solution

    |

  3. int(0)^(1)x^(2)(1-x)^(3)dx is equal to

    Text Solution

    |

  4. Let I = int(1)^(3)sqrt(x^(4)+x^(2)), dx then

    Text Solution

    |

  5. I=int0^(2pi) e^(sin^2x+sinx+1)dx then

    Text Solution

    |

  6. Let f"'(x)>=0 ,f'(x)> 0, f(0) =3 & f(x) is defined in [-2, 2].If f(x) ...

    Text Solution

    |

  7. Let mean value of f(x) = 1/(x+c) over interval (0,2) is 1/2 ln 3 then...

    Text Solution

    |

  8. lim(nrarr0) sum(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

    Text Solution

    |

  9. underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-...

    Text Solution

    |

  10. lim(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

    Text Solution

    |

  11. lim(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] i...

    Text Solution

    |

  12. Let I(n) = int(0)^(1)(1-x^(3))^(n)dx, (nin N) then

    Text Solution

    |

  13. The area bounded by the x-axis and the curve y = 4x - x^2 - 3 is

    Text Solution

    |

  14. The area of the figure bounded by right of the line y = x + 1, y= cos ...

    Text Solution

    |

  15. Area bounded by curve y^(3) - 9y + x = 0, and y-axis is

    Text Solution

    |

  16. Let f"[0,oo)rarr R be a continuous and stricity increasing function s...

    Text Solution

    |

  17. The area bounded by the curve y = e^x & the lines y = |x-1|, x = 2 is...

    Text Solution

    |

  18. The area bounded by y = 2-|2-x| and y=3/|x| is

    Text Solution

    |

  19. The area bounded by the curve y^(2) = 4x and the line 2x-3y+4=0 is

    Text Solution

    |

  20. Area of region bounded by x=0, y=0, x=2, y=2, y<=e^x & y>=lnx is

    Text Solution

    |