Home
Class 12
MATHS
Let I(1) = int(0)^(pi//4)1/((1+tanx)^(2)...

Let `I_(1) = int_(0)^(pi//4)1/((1+tanx)^(2))dx`, `I_(2) = int_(0)^(1)(dx)/((1+x)^(2)(1+x^(2)))` Then find the value of `(I_(1))/(I_(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and then find the ratio \( \frac{I_1}{I_2} \). ### Step 1: Evaluate \( I_1 \) The integral \( I_1 \) is given by: \[ I_1 = \int_{0}^{\frac{\pi}{4}} \frac{1}{(1 + \tan x)^2} \, dx \] To evaluate this integral, we can use the substitution \( t = \tan x \). Therefore, \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{1 + t^2} \). The limits change as follows: - When \( x = 0 \), \( t = \tan(0) = 0 \). - When \( x = \frac{\pi}{4} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \). Now, substituting these into the integral: \[ I_1 = \int_{0}^{1} \frac{1}{(1 + t)^2} \cdot \frac{dt}{1 + t^2} \] ### Step 2: Evaluate \( I_2 \) The integral \( I_2 \) is given by: \[ I_2 = \int_{0}^{1} \frac{1}{(1 + x)^2 (1 + x^2)} \, dx \] This integral can be evaluated directly or using a similar substitution as above. ### Step 3: Relate \( I_1 \) and \( I_2 \) Notice that both \( I_1 \) and \( I_2 \) have the same form after substitution: \[ I_1 = \int_{0}^{1} \frac{1}{(1 + t)^2 (1 + t^2)} \, dt \] Thus, we find that: \[ I_1 = I_2 \] ### Step 4: Find \( \frac{I_1}{I_2} \) Since \( I_1 = I_2 \), we can conclude: \[ \frac{I_1}{I_2} = \frac{I_2}{I_2} = 1 \] ### Final Answer \[ \frac{I_1}{I_2} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - III|30 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - IV|9 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - 1|30 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

If l_(1)=int_(0)^(1)(dx)/(sqrt(1+x^(2))) and I_(2)=int_(0)^(1)(dx)/(|x|) then

Let I _(1) = int _(1) ^(2) (dx )/(sqrt(1 + x ^(2))) and I _(2) = int _(1) ^(2) (dx)/(x)

I=int_(0)^(1)((1+x)/(2-x))dx

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).sin x dx , then :

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - II
  1. Evaluate (2005int(0)^(1002)dx(sqrt(1002^(2)-x^(2))+sqrt(1003^(2)-x^(...

    Text Solution

    |

  2. Show that int0^(pi/2)sqrt((sin2theta))sinthetadtheta=pi/4

    Text Solution

    |

  3. Let I(1) = int(0)^(pi//4)1/((1+tanx)^(2))dx, I(2) = int(0)^(1)(dx)/((...

    Text Solution

    |

  4. Find the value of ln(int(0)^(1) e^(t^(2)+t)(2t^(2)+t+1)dt)

    Text Solution

    |

  5. If int(1)^(0) (x)/(x+1+e^(x))dx is equal to -lnk then find the value o...

    Text Solution

    |

  6. If f,f, h be continuous functions on [0,a] such that f(a-x) = f(x), g(...

    Text Solution

    |

  7. If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int0^(pi/2)f(x)f(pi/2-x)...

    Text Solution

    |

  8. Evaluate : 3int(0)^(pi)(a^(2)sin^(2)x+b^(2)cos^(2)x)/(a^(4)sin^(2)x+b^...

    Text Solution

    |

  9. int(0)^(2pi)|sqrt(15) sin x + cos x|dx

    Text Solution

    |

  10. Let a be number in the interval [0,314] such that int(pi+a)^(3pi+a)|x...

    Text Solution

    |

  11. sum(n=1)^(oo)((1)/(4n-3)-(1)/(4n-1))=(pi)/(n) find n

    Text Solution

    |

  12. Iff(x)=x+int0^1t(x+t)f(t)dt , t h e nfin dt h ev a l u eoft h ed efin...

    Text Solution

    |

  13. If f(x) = (ax+b)e^(x) satisfies the equation : f(x) = int(0)^(x)e^(x)"...

    Text Solution

    |

  14. If the minimum of the following function f(x) defined at 0 lt x lt ...

    Text Solution

    |

  15. If f(pi) = 2x^(3)-15x^(2)+24x and g(x) = int(0)^(x)f(t) dt + int(0)^(5...

    Text Solution

    |

  16. Let f(x) = {{:(1-x ,"If" 0 le x le 1),(0, "if" 1 lt x le 2),((2-x)^(2)...

    Text Solution

    |

  17. Find the values of m (m > 0) for which the area bounded by the line y=...

    Text Solution

    |

  18. Find the values of m (m > 0) for which the area bounded by the line y=...

    Text Solution

    |

  19. Find area bounded by y = f^(-1)(x), x = 10, x = 4 and x-axis. Given ...

    Text Solution

    |

  20. Consider a line l: 2x -sqrt(3)y = 0 and a parameterized C :x = tant, y...

    Text Solution

    |