Home
Class 12
MATHS
Integrate with respect to x:1/sqrt(2x+1)...

Integrate with respect to `x:1/sqrt(2x+1)`

A

`sqrt(2x+1)+C`

B

`(2x+1)^(3//2)+C`

C

`-sqrt(2x+1)+C`

D

`1/(2x+1)^(3//2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{1}{\sqrt{2x + 1}} \, dx\), we will follow these steps: ### Step 1: Substitution Let: \[ u = 2x + 1 \] Then, differentiate \(u\) with respect to \(x\): \[ \frac{du}{dx} = 2 \quad \Rightarrow \quad du = 2 \, dx \quad \Rightarrow \quad dx = \frac{du}{2} \] ### Step 2: Rewrite the Integral Now, substitute \(u\) and \(dx\) into the integral: \[ \int \frac{1}{\sqrt{2x + 1}} \, dx = \int \frac{1}{\sqrt{u}} \cdot \frac{du}{2} \] This simplifies to: \[ \frac{1}{2} \int u^{-1/2} \, du \] ### Step 3: Integrate Now, integrate \(u^{-1/2}\): \[ \frac{1}{2} \int u^{-1/2} \, du = \frac{1}{2} \cdot \left( \frac{u^{1/2}}{1/2} \right) + C = u^{1/2} + C \] ### Step 4: Substitute Back Now substitute back \(u = 2x + 1\): \[ u^{1/2} + C = \sqrt{2x + 1} + C \] ### Final Answer Thus, the integral \(\int \frac{1}{\sqrt{2x + 1}} \, dx\) evaluates to: \[ \sqrt{2x + 1} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section C: Integration by parts:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SUBJECTIVE QUESTIONS|14 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

Integrate with respect to x:sqrt(x+1)

Integrate with respect to x : (1)/(sqrt(x))

Integrate with respect to x: i) 1/((x+1)sqrt(x+2))

Integrate with respect to x : 1/((x+1)(x+2))

Integrate with respect to x : 1/(x^(4)+x^(2)+1)

Integrate with respect to x: i) sin^(2)x , ii) cos^(3)x , iii) sin2xcos3x , iv) 1/(sqrt(x+3)-sqrt(x+2))

Integrate with respect to x : i) 1/(x^(2)+4)

Integrate with respect to x: ltbr i) 1/(2+cosx)

Integrate with respect to x,(2x+3)^((1)/(2)) from lower limit 3 to upper limit 11

Integrate the functions (x-1)/(sqrt(x^(2)-1))