Home
Class 12
MATHS
The value of int(cos2x)/(cosx) dx is equ...

The value of `int(cos2x)/(cosx)` dx is equal to

A

`2sinx-ln|secx+tanx|+C`

B

`2sinx-ln|secx-tanx|+C`

C

`2sinx+ln|secx+tanx|+C`

D

`sinx-ln|secx-tanx|+C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SECTION B; INTEGRATION USING SUBSTITUTION|8 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section C: Integration by parts:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SUBJECTIVE QUESTIONS|14 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

The value of int(cos2x)/(cosx+sinx)dx is

int (cosx)/(cos 3x)dx

int(x+sinx)/(1+cosx)\ dx is equal to

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

int(1-cosx)cosec^(2)x dx is equal to

int(cos2x)/(cosx-sinx)dx=

int(cos2x)/(sinx+cosx)dx=