Home
Class 12
MATHS
The value of int5^(5^(5^(x))). 5^(5^(x))...

The value of `int5^(5^(5^(x))). 5^(5^(x)). 5^(x)` Is equal to

A

`5^(5^(4))/(ln 5)^(3)+C`

B

`5^(5^(5^(5)))(ln 5)^(3)+C`

C

`5^(5^(5^(5)))/(ln 5)^(3)+C`

D

`5^(5^(5^(x)))/(ln 5)^(2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x \, dx \), we can follow these steps: ### Step 1: Simplify the expression We can combine the exponents in the integrand: \[ 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x = 5^{(5^{5^x} + 5^x + x)} \] ### Step 2: Substitution Let’s make a substitution to simplify the integral. We can set: \[ t = 5^{5^x} \] Then, we need to find \( dt \) in terms of \( dx \). ### Step 3: Differentiate the substitution To find \( dt \), we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 5^{5^x} \cdot \ln(5) \cdot 5^x \] This implies: \[ dt = 5^{5^x} \cdot \ln(5) \cdot 5^x \, dx \] ### Step 4: Solve for \( dx \) From the equation above, we can express \( dx \): \[ dx = \frac{dt}{5^{5^x} \cdot \ln(5) \cdot 5^x} \] ### Step 5: Substitute in the integral Now we substitute \( t \) and \( dx \) back into the integral: \[ \int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x \, dx = \int t \cdot \frac{dt}{\ln(5) \cdot 5^{5^x} \cdot 5^x} \] Since \( 5^{5^x} = t \), we can rewrite this as: \[ \int t \cdot \frac{dt}{\ln(5) \cdot t \cdot 5^x} = \int \frac{1}{\ln(5) \cdot 5^x} \, dt \] ### Step 6: Integrate Now we can integrate: \[ = \frac{1}{\ln(5)} \int dt = \frac{t}{\ln(5)} + C \] ### Step 7: Substitute back for \( t \) Finally, we substitute back \( t = 5^{5^x} \): \[ = \frac{5^{5^{5^x}}}{\ln(5)} + C \] ### Final Answer Thus, the value of the integral is: \[ \int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x \, dx = \frac{5^{5^{5^x}}}{\ln(5)} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section C: Integration by parts:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise PART-II ONLY ONE OPTION CORRECT TYPE|6 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

int5^(5^(5^(x)))*5^(5^(x))*5^(x)dx

int5^(5^(5^(x)))*5^(5^(x))*5^(x)*dx

Evaluate: int5^(5^(5^(x)))5^(5^(x))5^(x)dx

int5^(5^(x^(2)))*5^(5^(x))*5^(x)backslash dx is equal to

int(5^(x))^(4)dx is equal to

int5^(5^(5^(x)))*5^(5^(x))*5^(x)backslash dx

int_5^6(3(5^(-4x)))dx

The value of inte^(x)(x^(5)+5x^(4)+1)dx is