Home
Class 12
MATHS
int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c...

`int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c`, then k =

A

`ln 2`

B

`1/2` ln 2

C

`1/2`

D

`1/(ln 2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section C: Integration by parts:|6 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Section D: Algebraic Integral:|5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise PART-II ONLY ONE OPTION CORRECT TYPE|6 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

int(2^(x))/(sqrt(1-4^(x)))dx=k sin^(-1)2^(x)+c, then k=

STATEMENT-1 : If int(2^(x))/(sqrt(1-4^(x)))=ksin^(-1)(2^(x)) , then k equals (1)/(log2) . STATEMENT-2 : If intf(x)dx=-f(x)+c , then f(log_(e)2)=(1)/(2) STATEMENT-3 : int(e^(x))/(sqrt(1+e^(x)))dx=-2sqrt(1+e^(2))+c

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

int(dx)/(sqrt(1+4x^(2)))

int(dx)/(sqrt(1+4x^(2)))

int(1)/(sqrt(4-x^(2)))dx

int(2x)/(sqrt(1-x^(2)-x^(4)))dx=

int(a^(4))/(sqrt(1-a^(2x)))dx

int(2x)/(sqrt(1-x^(2)-x^(4)))dx