Home
Class 12
MATHS
The value of int(sinx.cosx.cos2x.cos4x.c...

The value of `int(sinx.cosx.cos2x.cos4x.cos8x.cos16x)`dx is equal to

A

`(sin16x)/(1024) + C`

B

`-(cos32x)/(1024)+C`

C

`(cos32x)/(1096)+C`

D

`-(cos32x)/(1096)+C`

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-2 Part-5|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-2 Part-6|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-2 Part-3|1 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

intsinx.cosx.cos2x.cos4x.cos8x.cos16xdx is equal to

The value of int_( sin )x cos x cos2x cos4x cos8x cos16x)dx is int(sin x cos x cos2x cos4x cos8x cos16x)dx is equal to

int sin x*cos x*cos2x*cos4x*cos8x*cos16xdx=

int cos 2x.cos 4x. Cos 6x dx is equal to

Evaluate: int sin x cos x cos2x cos4x cos8xdx

The value of int(cos2x)/(cosx+sinx)dx is

Evaluate int sin x cos x cos2x cos 4x cos 8x dx