Home
Class 12
MATHS
int(x+sqrt(x+1))/(x+2) dx is equal to:...

`int(x+sqrt(x+1))/(x+2)` dx is equal to:

A

`(x+1)-2sqrt(x+1)+2"ln"|x+2|=2tan^(-1)sqrt(x+1)+C`

B

`(x+1)+2sqrt(x+2)-2"ln"|x+2|-2tan^(-1)sqrt(x+2)+C`

C

`(x+1)+2sqrt(x+1)-2"ln"|x+2|-2tan^(-1)sqrt(x+1)+C`

D

`(x=1)+2sqrt(x+2)-2"ln"|x+1|+2tan^(-1)sqrt(x+2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x + \sqrt{x + 1}}{x + 2} \, dx\), we will use a substitution method. Let's go through the solution step by step. ### Step 1: Substitution Let’s substitute \(t^2 = x + 1\). Then, we can express \(x\) in terms of \(t\): \[ x = t^2 - 1 \] Next, we differentiate \(t^2\) to find \(dx\): \[ dx = 2t \, dt \] ### Step 2: Rewrite the Integral Now we need to rewrite the integral in terms of \(t\): \[ \sqrt{x + 1} = \sqrt{t^2} = t \] And for the denominator: \[ x + 2 = (t^2 - 1) + 2 = t^2 + 1 \] Now substituting everything into the integral gives: \[ \int \frac{(t^2 - 1) + t}{t^2 + 1} \cdot 2t \, dt \] ### Step 3: Simplify the Integral This simplifies to: \[ \int \frac{(t^2 - 1 + t)}{t^2 + 1} \cdot 2t \, dt = \int \frac{(t^3 + t^2 - t)}{t^2 + 1} \cdot 2 \, dt \] Now we can separate the integral: \[ = 2 \int \frac{t^3 + t^2 - t}{t^2 + 1} \, dt \] ### Step 4: Long Division We can perform polynomial long division on \(\frac{t^3 + t^2 - t}{t^2 + 1}\): 1. Divide \(t^3\) by \(t^2\) to get \(t\). 2. Multiply \(t\) by \(t^2 + 1\) to get \(t^3 + t\). 3. Subtract: \((t^3 + t^2 - t) - (t^3 + t) = t^2 - 2t\). So, we can rewrite the integral as: \[ 2 \int \left(t + \frac{t^2 - 2t}{t^2 + 1}\right) dt \] ### Step 5: Integrate Each Term Now we can integrate each term separately: 1. \(\int t \, dt = \frac{t^2}{2}\) 2. For \(\int \frac{t^2 - 2t}{t^2 + 1} \, dt\), we can split it into two parts: - \(\int 1 \, dt = t\) - \(\int \frac{-2t}{t^2 + 1} \, dt\) can be solved using substitution \(u = t^2 + 1\), leading to \(-\log(t^2 + 1)\). Putting it all together, we have: \[ 2 \left( \frac{t^2}{2} + t - \log(t^2 + 1) \right) + C = t^2 + 2t - 2\log(t^2 + 1) + C \] ### Step 6: Back Substitute Now we substitute back \(t = \sqrt{x + 1}\): \[ = (\sqrt{x + 1})^2 + 2\sqrt{x + 1} - 2\log((\sqrt{x + 1})^2 + 1) + C \] This simplifies to: \[ = (x + 1) + 2\sqrt{x + 1} - 2\log(x + 2) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x + \sqrt{x + 1}}{x + 2} \, dx = x + 1 + 2\sqrt{x + 1} - 2\log(x + 2) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SINGLE AND DOUBLE VALUE INTEGER TYPE|15 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise PART III: ONE OR MORE THAN ONE OPTIONS CORRECT TYPE|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-2 Part-12|1 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(5-x))/(x)dx is equal to

int(sqrt(x^(2)+1))/(x^(4))dx is equal to

int(sqrt(x^2+1))/(x^(4))dx" is equal to "

int(a^(sqrt(x)))/(sqrt(x))dx is equal to

int(dx)/(sqrt((1-x)(x-2))) is equal to

int sqrt((a+x)/(a-x))dx is equal to

int x sqrt(x+2)dx is equal to

int(1)/(sqrt(9x-4x^(2)))dx is equal to

int_(-1)^(1)(x)/(sqrt(1-x^(2)))*sin^(-1)(2x sqrt(1-x^(2)))dx is equal to

int _(0)^(2) sqrt((2+x)/(2-x)) dx is equal to