Home
Class 12
MATHS
If f(1-x)/(1+x)=x and g(x) = intf(x)dx t...

If `f(1-x)/(1+x)=x` and `g(x) = intf(x)dx` then

A

g(x) is continous in domain

B

g(x) is discontinous at two points in its domain

C

`lim_(xto infty)g^(')=-1`

D

`intg(x)dx=-x^(2)/2+(2x+1)lambdan(1+x)/e+C`

Text Solution

Verified by Experts

AC
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise COMPREHENSION|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-3 Part I- JEE ADVANCED/ IIT-JEE PROBLEMS|8 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SINGLE AND DOUBLE VALUE INTEGER TYPE|15 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/((1-x)) and g(x)=f[f{f(x))} then g(x) is discontinuous at

(d)/(dx)[intf(x)dx]=

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=x+tan x and g(x) is inverse of f(x) then g'(x) is equal to (1)(1)/(1+(g(x)-x)^(2))(2)(1)/(1-(g(x)-x)^(2))(1)/(2+(g(x)-x)^(2))(4)(1)/(2-(g(x)-x)^(2))

If f(x)=x " and " g(x)=sinx , then intf(x)*g(x)dx=

If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1 , then : int_(0)^(pi)[f(x)+g(x)]dx=

If f(x)=x+tan x and f(x) is inverse of g(x), then g'(x) is equal to (1)/(1+(g(x)-x)^(2)) (b) (1)/(1+(g(x)+x)^(2))(1)/(2-(g(x)-x)^(2)) (d) (1)/(2+(g(x)-x)^(2))

If f(x) is polynomial function such that f(x)+f'(x)+f(x)+f'(x)=x^(3) and g(x)=int(f(x))/(x^(3)) and g(1)=1 then g( e ) is

If intf(x)dx=g(x), then : intf^(-1)(x)dx=

If f(x)=(x^(2)-1)/x^(3) , then intf(x)dx is