Home
Class 12
MATHS
If int(x-1)/(x^2sqrt(2x^2-2x-1))dx= sqrt...

If `int(x-1)/(x^2sqrt(2x^2-2x-1))dx`= `sqrt(f(x))/g(x)`+c then the value of `f(x)` and `g(x)` is

A

`f(x) = 2x^(2)-2x+1`

B

`g(x) = x+1`

C

`g(x)=x`

D

`f(x) =2x^(2)-2x`

Text Solution

Verified by Experts

AC
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE|Exercise COMPREHENSION|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise Exercise-3 Part I- JEE ADVANCED/ IIT-JEE PROBLEMS|8 Videos
  • INDEFINITE INTEGRATION

    RESONANCE|Exercise SINGLE AND DOUBLE VALUE INTEGER TYPE|15 Videos
  • GEOMETRY

    RESONANCE|Exercise Exercise-1 (Part-I: Previous Asked Question For Pre RMO)|50 Videos
  • MATRICES & DETERMINANT

    RESONANCE|Exercise HLP|33 Videos

Similar Questions

Explore conceptually related problems

If int(x-1)/(x^(2)sqrt(2x^(2)-2x-1))dx=(sqrt(f(x)))/(g(x))+c then the value of f(x) and g(x) is

int_( then )(x-1)(dx)/(x^(2)(sqrt(2x^(2)-2x+1)))=(sqrt(f(x)))/(g(x))+c

If int((x-1)dx)/(x^(2)sqrt(2x^(2)-2x+1))=(sqrt(f(x)))/(g(x))+C, then f(x)=2x^(2)-2x+1 (b) g(x)=x+1g(x)=x( d) f(x)=sqrt(2x^(2)-2x)

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(x) is

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is