Home
Class 12
PHYSICS
If V=2r^(2) then find (i) vec(E) (1, 0, ...

If `V=2r^(2)` then find (i) `vec(E) (1, 0, -2)` (ii) `vec(E) (r=2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the electric field \(\vec{E}\) at two different points based on the potential \(V = 2r^2\). ### Step 1: Understand the relationship between electric field and potential The electric field \(\vec{E}\) is related to the electric potential \(V\) by the equation: \[ \vec{E} = -\nabla V \] where \(\nabla V\) is the gradient of the potential. ### Step 2: Calculate the gradient of the potential Given \(V = 2r^2\), where \(r^2 = x^2 + y^2 + z^2\), we can express \(V\) in terms of \(x\), \(y\), and \(z\): \[ V = 2(x^2 + y^2 + z^2) \] Now, we compute the gradient \(\nabla V\): \[ \nabla V = \left( \frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z} \right) \] Calculating each component: - \(\frac{\partial V}{\partial x} = 4x\) - \(\frac{\partial V}{\partial y} = 4y\) - \(\frac{\partial V}{\partial z} = 4z\) Thus, we have: \[ \nabla V = (4x, 4y, 4z) \] ### Step 3: Find the electric field \(\vec{E}\) Now substituting into the equation for \(\vec{E}\): \[ \vec{E} = -\nabla V = (-4x, -4y, -4z) \] ### Step 4: Calculate \(\vec{E}\) at the point (1, 0, -2) Substituting \(x = 1\), \(y = 0\), and \(z = -2\): \[ \vec{E} = (-4(1), -4(0), -4(-2)) = (-4, 0, 8) \] ### Step 5: Calculate \(\vec{E}\) when \(r = 2\) When \(r = 2\), we can express \(E\) in terms of \(r\): \[ V = 2r^2 \implies \vec{E} = -\frac{dV}{dr} \hat{r} \] Calculating \(\frac{dV}{dr}\): \[ \frac{dV}{dr} = \frac{d}{dr}(2r^2) = 4r \] Thus, \[ \vec{E} = -4r \hat{r} \] Substituting \(r = 2\): \[ \vec{E} = -4(2) \hat{r} = -8 \hat{r} \] ### Final Answers 1. \(\vec{E} \text{ at } (1, 0, -2) = (-4, 0, 8)\) 2. \(\vec{E} \text{ at } r = 2 = -8 \hat{r}\)
Promotional Banner

Topper's Solved these Questions

  • ELECTROSTATICS

    RESONANCE|Exercise Exercise-1 Section (H)|5 Videos
  • ELECTROSTATICS

    RESONANCE|Exercise Exercise-1 Section (I)|5 Videos
  • ELECTROSTATICS

    RESONANCE|Exercise Exercise-1 Section (F)|4 Videos
  • ELECTROMAGNETIC INDUCTION

    RESONANCE|Exercise A.l.P|19 Videos
  • EXPERIMENTAL PHYSICS

    RESONANCE|Exercise PART -II|10 Videos

Similar Questions

Explore conceptually related problems

If E=2r^(2) then find V(r)

V=x^(2)+y . Find vec(E) .

Consider the equations of the straight lines given by : L_(1) : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) L_(2) : vec(r) = (2 hati - hatj - hatk) + mu ( 2 hati + hatj + 2 hatk) . If vec(a_(1))= hati + 2 hatj + hatk, " " vec(b_(1)) = hati - hatj + hatk , vec(a_(2)) = 2 hat(i) - hatj - hatk, vec(b_(2)) = 2 hati + hatj + 2 hatk , then find : (i) vec(a_(2)) - vec(a_(1)) " " (ii) vec(b_(2)) - vec(b_(1)) (iii) vec(b_(1))xx vec(b_(2)) " " (iv) vec(a_(1)) xx vec(a_(2)) (v) (vec(b_(1)) xx vec(b_(2))).(vec(a_(1)) xxvec(a_(2))) (vi) the shortest distance between L_(1) and L_(2) .

If vec(E)_(1) and vec(E)_(2) are electric field at axial point and equatorial point of an electric dipole, then (1) vec(E)_(1).vec(E)_(2)gt 0 (2) vec(E)_(1).vec(E)_(2)=0 (3) vec(E)_(1).vec(E)_(2)lt 0 (4) vec(E)_(1)+vec(E)_(2)=vec(0)

Referring to the spherical equipotential lines in (Fig. 3.36)A, find (i) vec E = f ( r) (ii) vec E - pattern. a. . b. . c. .

Angle between the planes: (i) vec(r). (hati - 2 hatj - hatk) = 1 and vec(r). (3 hati - 6 hatj + 2 hatk) = 0 (ii) vec(r). (2 hati + 2 hatj - 3 hatk ) = 5 and vec(r) . ( 3 hati - 3 hatj + 5 hatk ) = 3

If vec(E)=2y hat(i)+2x hat(j) , then find V (x, y, z)

Find the angle between vec(a) and vec(b) , when (i) |vec(a)|=2, |vec(b)|=1 and vec(A).vec(B)=sqrt(3) (ii) |vec(a)|=|vec(b)|=sqrt(2) and vec(a).vec(b)=-1 .

A charged particle goes undeflected in a region containing electric and magnetic field. It is possible that (i) vec(E) || vec(B). vec(v) || vec(E) (ii) vec(E) is not parallel to vec(B) (iii) vec(v) || vec(B) but vec(E) is not parallel to vec(B) (iv) vec(E)||vec(B) but vec(v) is not parallel to vec(E)

Find 3 -dimensional vectors vec v_ (1), vec v_ (2), vec v_ (3) satisfying vec v_ (1) * vec v_ (1) = 4, vec v_ (1) * vec v_ (2) = - 2, vec v_ (1) * vec v_ (3) = 6, vec v_ (2) * vec v_ (2) = 2, vec v_ (2) * vec v_ (3) = - 5, vec v_ (3) * vec v_ (3)