Home
Class 12
MATHS
If Sigma(i=1)^(20) ((""^(20)C(i-1))/(""^...

If `Sigma_(i=1)^(20) ((""^(20)C_(i-1))/(""^(20)C_(i)+""^(20)C_(i-1)))^(3)=(k)/(21)`, then k equals

A

200

B

50

C

100

D

400

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation given in the question and find the value of \( k \). ### Step-by-Step Solution 1. **Understanding the Summation**: We are given: \[ \sum_{i=1}^{20} \left( \frac{\binom{20}{i-1}}{\binom{20}{i} + \binom{20}{i-1}} \right)^3 = \frac{k}{21} \] 2. **Simplifying the Fraction**: The term inside the summation can be simplified: \[ \frac{\binom{20}{i-1}}{\binom{20}{i} + \binom{20}{i-1}} \] We know that: \[ \binom{20}{i} = \frac{20!}{i!(20-i)!} \quad \text{and} \quad \binom{20}{i-1} = \frac{20!}{(i-1)!(20-i+1)!} \] Thus, we can rewrite the fraction: \[ \frac{\binom{20}{i-1}}{\binom{20}{i} + \binom{20}{i-1}} = \frac{\frac{20!}{(i-1)!(20-i+1)!}}{\frac{20!}{i!(20-i)!} + \frac{20!}{(i-1)!(20-i+1)!}} \] After canceling \( 20! \) from the numerator and denominator, we get: \[ = \frac{1}{\frac{1}{i} + \frac{1}{21-i}} = \frac{i(21-i)}{21} \] 3. **Cubing the Result**: Now we cube the result: \[ \left( \frac{i(21-i)}{21} \right)^3 = \frac{i^3(21-i)^3}{21^3} \] 4. **Substituting Back into the Summation**: The summation now becomes: \[ \sum_{i=1}^{20} \left( \frac{i(21-i)}{21} \right)^3 = \frac{1}{21^3} \sum_{i=1}^{20} i^3 (21-i)^3 \] 5. **Using the Identity for \( i^3 \)**: We can use the identity for the sum of cubes: \[ \sum_{i=1}^{n} i^3 = \left( \frac{n(n+1)}{2} \right)^2 \] For \( n = 20 \): \[ \sum_{i=1}^{20} i^3 = \left( \frac{20 \cdot 21}{2} \right)^2 = 10^2 \cdot 21^2 = 100 \cdot 441 = 44100 \] 6. **Final Calculation**: Now substituting back, we have: \[ \sum_{i=1}^{20} i^3 = 44100 \] Therefore: \[ \frac{1}{21^3} \cdot 44100 = \frac{44100}{9261} = \frac{44100}{21^3} \] Setting this equal to \( \frac{k}{21} \): \[ \frac{44100}{21^3} = \frac{k}{21} \] Multiplying both sides by \( 21^2 \): \[ k = \frac{44100}{21^2} = \frac{44100}{441} = 100 \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{100} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(20)((""^(20)C_(i-1))/(""^(20)C_(i)+""^(20)C_(i=1)))^(3)=k/21 , then k/20 equals _________.

If sum_(i=1)^(10) ( (""^10C_(i-1))/(""^10C_i + ""^10C_(i-1) ))^3 = (k)/(11) , then k equals :

If sum_(i=1)^(n-1) ((""^(n)C_(i-1))/(""^(n)C_(i)+""^(n)C_(i-1)))^(3) = (36)/(13) , , then n is equal to

1.^(20)C_(1)-2.^(20)C_(2)+3.^(20)C_(3)-...-20.^(20)C_(20)

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

sum_(i=1)^20 (.^20C_(i-1))/(.^20C_i+.^20C_(i-1))=k/21 then find the value of k. (a) 400 (b) 100 (c) 50 (d) 200

sum_(k=0)^(20)(.^(20)C_(k))^(2) is equal to

CENGAGE-JEE 2019-MCQ
  1. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  2. The coefficient of t^4 in ((1-t^6)/(1-t))^3 (a) 18 (b) 12 ...

    Text Solution

    |

  3. If Sigma(i=1)^(20) ((""^(20)C(i-1))/(""^(20)C(i)+""^(20)C(i-1)))^(3)=(...

    Text Solution

    |

  4. If the third term in expansion of (1+x^(log2x))^5 is 2560 then x is eq...

    Text Solution

    |

  5. The positive value of lambda for which the coefficient of x^(2) in the...

    Text Solution

    |

  6. If Sigma(r=0)^(25) (""^(50)C(r)""^(50-r)C(25-r))=K(""^(50)C(25)), th...

    Text Solution

    |

  7. If the middle term of the expansion of (x^3/3+3/x)^8 is 5670 then sum ...

    Text Solution

    |

  8. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |

  9. Let (x+10)^(50)+(x-10)^(50)=a(0)+a(1)x+a(2)x^(2)+...+a(50)x^(50) for a...

    Text Solution

    |

  10. Let Sn=1+q+q^2 +?+q^n and Tn =1+((q+1)/2)+((q+1)/2)^2+?+((q+1)/2)^n If...

    Text Solution

    |

  11. Ratio of the 5^(th) term from the beginning to the 5^(th) term from th...

    Text Solution

    |

  12. If .^(n)C(4),.^(n)C(5), .^(n)C(6) are in A.P., then find the value of ...

    Text Solution

    |

  13. Number of irrational terms in expansion of (2^(1/5) + 3^(1/10))^60 is

    Text Solution

    |

  14. Two integers are selected at random from the set {1, 2, …, 11}. Given ...

    Text Solution

    |

  15. Let S={1,2,...,20} A subset B of S is said to be "nice", if the sum of...

    Text Solution

    |

  16. In a class of 60 students, 40 opted for NCC, 30 opted for NSS and 20 o...

    Text Solution

    |

  17. In a game, a man wins Rs 100 if he gets 5 or 6 on a throw of a fair di...

    Text Solution

    |

  18. If the Boolean expression (p oplusq)wedge (~p Theta q) is equivalent t...

    Text Solution

    |

  19. The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a)...

    Text Solution

    |

  20. Given three statements P: 5 is a prime number, Q:7 is a factor of 192,...

    Text Solution

    |