Home
Class 12
MATHS
If A = [(costheta,-sintheta),(sintheta,c...

If `A = [(costheta,-sintheta),(sintheta,costheta)]`, then the matrix `A^(-50)`, when `theta = (pi)/(12)`, is equal to

A

`[(sqrt(3)/(2),(1)/(2)),(-(1)/(2),sqrt(3)/(2))]`

B

`[((1)/(2),sqrt(3)/(2)),(-sqrt(3)/(2),(1)/(2))]`

C

`[((1)/(2),-sqrt(3)/(2)),(sqrt(3)/(2),(1)/(2))]`

D

`[(sqrt(3)/(2),-(1)/(2)),((1)/(2),sqrt(3)/(2))]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A^{-50} \) where \[ A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] and \( \theta = \frac{\pi}{12} \). ### Step 1: Verify that A is an Orthogonal Matrix First, we need to check if \( A \) is an orthogonal matrix. We can do this by calculating \( A A^T \) (where \( A^T \) is the transpose of \( A \)): \[ A^T = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] Now, we compute \( A A^T \): \[ A A^T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] Calculating the elements: 1. First row, first column: \( \cos^2 \theta + \sin^2 \theta = 1 \) 2. First row, second column: \( \cos \theta \sin \theta - \sin \theta \cos \theta = 0 \) 3. Second row, first column: \( \sin \theta \cos \theta - \cos \theta \sin \theta = 0 \) 4. Second row, second column: \( \sin^2 \theta + \cos^2 \theta = 1 \) Thus, \[ A A^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] This confirms that \( A \) is an orthogonal matrix, and therefore \( A^{-1} = A^T \). ### Step 2: Find \( A^{-1} \) From the property of orthogonal matrices, we have: \[ A^{-1} = A^T = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ### Step 3: General Formula for \( A^{-n} \) Using the properties of the matrix, we can derive that: \[ A^{-n} = \begin{pmatrix} \cos(n\theta) & \sin(n\theta) \\ -\sin(n\theta) & \cos(n\theta) \end{pmatrix} \] ### Step 4: Calculate \( A^{-50} \) Now, we need to compute \( A^{-50} \): \[ A^{-50} = \begin{pmatrix} \cos(50\theta) & \sin(50\theta) \\ -\sin(50\theta) & \cos(50\theta) \end{pmatrix} \] Substituting \( \theta = \frac{\pi}{12} \): \[ A^{-50} = \begin{pmatrix} \cos\left(50 \cdot \frac{\pi}{12}\right) & \sin\left(50 \cdot \frac{\pi}{12}\right) \\ -\sin\left(50 \cdot \frac{\pi}{12}\right) & \cos\left(50 \cdot \frac{\pi}{12}\right) \end{pmatrix} \] Calculating \( 50 \cdot \frac{\pi}{12} = \frac{50\pi}{12} = \frac{25\pi}{6} \). ### Step 5: Simplify \( \cos\left(\frac{25\pi}{6}\right) \) and \( \sin\left(\frac{25\pi}{6}\right) \) To simplify these trigonometric functions, we can reduce \( \frac{25\pi}{6} \): \[ \frac{25\pi}{6} = 4\pi + \frac{\pi}{6} \quad (\text{since } 4\pi = 24\pi/6) \] Thus, \[ \cos\left(\frac{25\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] \[ \sin\left(\frac{25\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] ### Step 6: Write the Final Matrix Substituting these values back into the matrix: \[ A^{-50} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] ### Final Answer Thus, the matrix \( A^{-50} \) is: \[ \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If A=[(costheta, -sin theta ),(sin theta, cos theta) ] , then the matrix A^(-50) when theta=pi/12 , is equal to :

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

Evaluate- |[costheta,sintheta],[sintheta,costheta]|

If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I_2 , if

Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

Let A={:[(costheta,-sintheta),(-sintheta,-costheta)]:} then inverse of A is

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

CENGAGE-JEE 2019-MCQ
  1. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  2. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  3. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  4. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  5. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  6. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  7. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  8. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  9. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  10. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  11. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  12. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  15. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  16. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  17. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |

  18. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  19. If the probability of hitting a target by a shooter, in any shot is 1/...

    Text Solution

    |

  20. In a random experiment, a fair die is rolled until two fours are obtai...

    Text Solution

    |