Home
Class 12
MATHS
Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] wh...

Let `A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)]` where `b gt 0`. Then the minimum value of `("det.(A)")/(b)` is

A

`sqrt(3)`

B

`-sqrt(3)`

C

`-2sqrt(3)`

D

`2sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of \(\frac{\text{det}(A)}{b}\) where \(A = \begin{pmatrix} 2 & b & 1 \\ b & b^2 + 1 & b \\ 1 & b & 2 \end{pmatrix}\) and \(b > 0\). ### Step 1: Calculate the Determinant of Matrix A We will calculate the determinant of matrix \(A\) using the formula for the determinant of a \(3 \times 3\) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \(A\): \[ \text{det}(A) = 2 \left( (b^2 + 1) \cdot 2 - b \cdot b \right) - b \left( b \cdot 2 - b \cdot 1 \right) + 1 \left( b \cdot b - (b^2 + 1) \cdot 1 \right) \] Calculating each term: 1. First term: \[ 2 \left( (b^2 + 1) \cdot 2 - b^2 \right) = 2 \left( 2b^2 + 2 - b^2 \right) = 2( b^2 + 2) = 2b^2 + 4 \] 2. Second term: \[ -b \left( 2b - b \right) = -b^2 \] 3. Third term: \[ 1 \left( b^2 - (b^2 + 1) \right) = 1 \left( b^2 - b^2 - 1 \right) = -1 \] Combining these results: \[ \text{det}(A) = (2b^2 + 4) - b^2 - 1 = b^2 + 3 \] ### Step 2: Formulate the Expression to Minimize We need to minimize: \[ \frac{\text{det}(A)}{b} = \frac{b^2 + 3}{b} = b + \frac{3}{b} \] ### Step 3: Find the Critical Points To find the minimum value, we differentiate \(f(b) = b + \frac{3}{b}\): \[ f'(b) = 1 - \frac{3}{b^2} \] Setting the derivative to zero to find critical points: \[ 1 - \frac{3}{b^2} = 0 \implies \frac{3}{b^2} = 1 \implies b^2 = 3 \implies b = \sqrt{3} \] ### Step 4: Verify Minimum Value To confirm it's a minimum, we check the second derivative: \[ f''(b) = \frac{6}{b^3} \] Since \(b > 0\), \(f''(b) > 0\) indicates that \(f(b)\) is concave up at \(b = \sqrt{3}\), confirming a local minimum. ### Step 5: Calculate the Minimum Value Substituting \(b = \sqrt{3}\) into \(f(b)\): \[ f(\sqrt{3}) = \sqrt{3} + \frac{3}{\sqrt{3}} = \sqrt{3} + \sqrt{3} = 2\sqrt{3} \] Thus, the minimum value of \(\frac{\text{det}(A)}{b}\) is: \[ \boxed{2\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let A = [{:(2, b,1),(b, b^(2)+1,b),(1, b,2):}], " where "b gt 0 . Then, the maximum value of ("det"(A))/(b) is

If ab gt 0 , then the minimum value of (a+b)((1)/(a)+(1)/(b)) is

Let a,b>0, let 5a-b,2a+b,a+2b be in A.P.and (b+1)^(2),ab+1,(a-1)^(2) are in G.P. then the value of (a^(-1)+b^(-1)) is

Let A={:((1,2),(3,4):}) and B={:((a,0),(0,b)):} , where a,b in N , then

If A=[{:(2,3),(-1,-2):}] and B=sum_(r=1)^(10)A^r , then the value of det (B)is equal to

Let f(x)=(1+b^(2))x^(2)+2bx+1 and let m(b) the minimum value of f(x) as b varies, the range of m(b) is (A) [0,1](B)(0,(1)/(2)] (C) [(1)/(2),1](D)(0,1]

Let f(x)=(1+b^(2))x^(2)+2bx+1 and let m(b) be the minimum value of f(x). As b varies,the range of m(b) is [0,} b.(0,(1)/(2)) c.(1)/(2),1 d.(0,1]

Let f(x0=(1+b^(2))x^(2)+2bx+1 and let m(b) be the minimum value of f(x). As b varies, the range of m(b) is

Let f(x)=(1+b^(2))x^(2)+2bx+1 and let m(b) be the minimum value of f (x). As b varies, the range of m (b) is

CENGAGE-JEE 2019-MCQ
  1. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  2. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  3. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  4. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  5. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  6. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  7. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  8. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  9. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  10. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  11. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  12. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  15. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  16. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  17. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |

  18. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  19. If the probability of hitting a target by a shooter, in any shot is 1/...

    Text Solution

    |

  20. In a random experiment, a fair die is rolled until two fours are obtai...

    Text Solution

    |