Home
Class 12
MATHS
Let A and B be two invertible matrices o...

Let A and B be two invertible matrices of order `3xx3`. If det. `(ABA^(T))` = 8 and det. `(AB^(-1))` = 8, then det. `(BA^(-1)B^(T))` is equal to

A

16

B

`(1)/(16)`

C

`(1)/(4)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \det(BA^{-1}B^T) \) given the conditions \( \det(ABA^T) = 8 \) and \( \det(AB^{-1}) = 8 \). ### Step-by-Step Solution: 1. **Use the property of determinants**: We know that for any square matrix \( M \), \( \det(M^T) = \det(M) \). Therefore, we can express \( \det(ABA^T) \) as: \[ \det(ABA^T) = \det(A) \cdot \det(B) \cdot \det(A^T) = \det(A)^2 \cdot \det(B) \] Given that \( \det(ABA^T) = 8 \), we have: \[ \det(A)^2 \cdot \det(B) = 8 \quad \text{(1)} \] 2. **Analyze the second condition**: For the second condition, we have: \[ \det(AB^{-1}) = \det(A) \cdot \det(B^{-1}) = \det(A) \cdot \frac{1}{\det(B)} \] Given that \( \det(AB^{-1}) = 8 \), we can write: \[ \det(A) \cdot \frac{1}{\det(B)} = 8 \quad \text{(2)} \] 3. **From equations (1) and (2)**: From equation (1), we have: \[ \det(B) = \frac{8}{\det(A)^2} \] Substituting this into equation (2): \[ \det(A) \cdot \frac{1}{\frac{8}{\det(A)^2}} = 8 \] Simplifying this gives: \[ \det(A) \cdot \frac{\det(A)^2}{8} = 8 \] \[ \frac{\det(A)^3}{8} = 8 \] \[ \det(A)^3 = 64 \quad \Rightarrow \quad \det(A) = 4 \] 4. **Finding \( \det(B) \)**: Now substitute \( \det(A) = 4 \) back into equation (1): \[ \det(4)^2 \cdot \det(B) = 8 \] \[ 16 \cdot \det(B) = 8 \quad \Rightarrow \quad \det(B) = \frac{8}{16} = \frac{1}{2} \] 5. **Calculate \( \det(BA^{-1}B^T) \)**: Now we can find \( \det(BA^{-1}B^T) \): \[ \det(BA^{-1}B^T) = \det(B) \cdot \det(A^{-1}) \cdot \det(B^T) = \det(B) \cdot \frac{1}{\det(A)} \cdot \det(B) \] Since \( \det(B^T) = \det(B) \): \[ \det(BA^{-1}B^T) = \det(B)^2 \cdot \frac{1}{\det(A)} \] Substituting the values we found: \[ \det(BA^{-1}B^T) = \left(\frac{1}{2}\right)^2 \cdot \frac{1}{4} = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16} \] ### Final Answer: Thus, \( \det(BA^{-1}B^T) = \frac{1}{16} \).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let A and B be two invertible matrices of order 3 xx 3 . If "det"(ABA^(T)) =8 " and det"(AB^(-1)) =8, " then det"(BA^(-1)B^(T)) is equal to

Let A and B be two 3xx3 invertible matrices . If A + B = AB then

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If A and B are square matrices of order 3 such that det.(A)=-2 and det.(B)=1, then det.(A^(-1)adjB^(-1). adj (2A^(-1)) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to

Let P, Q and R be invertible matrices of order 3 such A=PQ^(-1), B=QR^(-1) and C=RP^(-1) . Then the value of det. (ABC+BCA+CAB) is equal to _______.

Let A,B be non- singular matrices of order 3 such that det(A)=5 and A^(-1)B^(2)+AB=0 then the value of det(A^(6)-2A^(4)B+A^(2)B^(2)) is equal to 10^(k) where k is equal to

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

CENGAGE-JEE 2019-MCQ
  1. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  2. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  3. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  4. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  5. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  6. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  7. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  8. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  9. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  10. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  11. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  12. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  15. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  16. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  17. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |

  18. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  19. If the probability of hitting a target by a shooter, in any shot is 1/...

    Text Solution

    |

  20. In a random experiment, a fair die is rolled until two fours are obtai...

    Text Solution

    |