Home
Class 12
MATHS
If A = [(1,sintheta,1),(-sintheta,1,sint...

If `A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`, then for all
`thetain ((3pi)/(4),(5pi)/(4))`, det. (A) lies in the interval

A

`[(5)/(2),4)`

B

`((3)/(2),3]`

C

`(0,(3)/(2)]`

D

`(1,(5)/(2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the matrix \( A = \begin{pmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{pmatrix} \) for \( \theta \) in the interval \( \left( \frac{3\pi}{4}, \frac{5\pi}{4} \right) \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) We will use the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ A = \begin{pmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{pmatrix} \] Let’s denote the elements as follows: - \( a = 1, b = \sin \theta, c = 1 \) - \( d = -\sin \theta, e = 1, f = \sin \theta \) - \( g = -1, h = -\sin \theta, i = 1 \) Now, substituting these values into the determinant formula: \[ \text{det}(A) = 1 \cdot (1 \cdot 1 - \sin \theta \cdot (-\sin \theta)) - \sin \theta \cdot (-\sin \theta \cdot 1 - \sin \theta \cdot (-1)) + 1 \cdot (-\sin \theta \cdot (-\sin \theta) - 1 \cdot 1) \] Calculating each term: 1. \( 1 \cdot (1 + \sin^2 \theta) = 1 + \sin^2 \theta \) 2. \( -\sin \theta \cdot (-\sin \theta + \sin \theta) = 0 \) 3. \( 1 \cdot (\sin^2 \theta - 1) = \sin^2 \theta - 1 \) Putting it all together: \[ \text{det}(A) = (1 + \sin^2 \theta) + 0 + (\sin^2 \theta - 1) = 2\sin^2 \theta \] ### Step 2: Determine the Range of \( \sin^2 \theta \) Now, we need to find the range of \( \sin^2 \theta \) for \( \theta \) in the interval \( \left( \frac{3\pi}{4}, \frac{5\pi}{4} \right) \). 1. At \( \theta = \frac{3\pi}{4} \), \( \sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2} \) so \( \sin^2 \frac{3\pi}{4} = \frac{1}{2} \). 2. At \( \theta = \frac{5\pi}{4} \), \( \sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2} \) so \( \sin^2 \frac{5\pi}{4} = \frac{1}{2} \). Since \( \sin \theta \) is negative in the third quadrant, \( \sin^2 \theta \) will take values from \( 0 \) to \( \frac{1}{2} \) in this interval. ### Step 3: Calculate the Range of \( 2\sin^2 \theta \) Now, multiplying the range of \( \sin^2 \theta \) by 2: - Minimum: \( 2 \cdot 0 = 0 \) - Maximum: \( 2 \cdot \frac{1}{2} = 1 \) Thus, the determinant \( \text{det}(A) = 2\sin^2 \theta \) lies in the interval \( (0, 1) \). ### Conclusion The determinant of the matrix \( A \) lies in the interval \( (0, 1) \).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If A= [{:(1, "sin"theta,1), (-"sin"theta, 1, "sin" theta),(-1, -"sin"theta, 1):}], " then for all "theta in ((3pi)/(4), (5pi)/(4)) det (A) lies in the interval

If Delta=|{:(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1):}|"prove that" 2lt=Deltalt=4.

sqrt((1+sintheta)/(1-sintheta)) = __.

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?

If cos theta-4sintheta=1, the sintheta+4costheta=

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

Let A=[(1,sintheta, 1),(-sintheta, 1, sintheta),(-1, -sintheta, 1)], where 0lethetalt2pi then (A) |A|=0 (B) |A|epsilon[2,4] (C) |A|epsilon)(0,oo) (D) |A|epsilon(2,oo)

(1-costheta)/(sintheta)+(sintheta)/(1-costheta) =___________.

CENGAGE-JEE 2019-MCQ
  1. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  2. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  3. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  4. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  5. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  6. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  7. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  8. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  9. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  10. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  11. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  12. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  15. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  16. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  17. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |

  18. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  19. If the probability of hitting a target by a shooter, in any shot is 1/...

    Text Solution

    |

  20. In a random experiment, a fair die is rolled until two fours are obtai...

    Text Solution

    |