Home
Class 12
MATHS
Evaluate lim(xto2^(+)) ([x-2])/(log(x-2)...

Evaluate `lim_(xto2^(+)) ([x-2])/(log(x-2)),` where `[.]` represents the greatest integer function.

Text Solution

Verified by Experts

The correct Answer is:
0

`L=underset(xto2^(+))lim([x-2])/(log(x-2))`
When `xto2^(+),x-2to0^(+)`
or `[x-2]=0`
Also, `log(x-2)tolog0^(+)to-oo`
Thus, `L=("exact "0)/(-oo)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate :(lim)_(x rarr2^(+))([x-2])/(log(x-2)), where [.] represents the greatest integer function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Prove that lim_(xto2) [x] does not exists, where [.] represents the greatest integer function.

lim_(xrarr pi//2)([x/2])/(log_e(sinx)) (where [.] denotes the greatest integer function)

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is