Home
Class 12
MATHS
If f(x)={{:((x-|x|)/(x)","xne0),(2", ...

If `f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):},`show that `lim_(xto0) f(x)` does not exist.

Text Solution

Verified by Experts

L.H.L of `f(x)` at `x=0` is
`underset(xto0)limf(x)=underset(hto0)limf(0-h)=underset(hto0)lim(-h-|-h)/((-h))`
`=underset(hto0)lim(-h-h)/(-h)=underset(hto0)lim(-2h)/(-h)=underset(hto0)lim2=2`
R.H.L of `f(x)` at `x=0` is
`underset(hto0)limf(x)=underset(hto0)limf(0+h)=underset(hto0)lim(h-|h)/((h))`
`underset(hto0)lim(h-h)/(h)=underset(hto0)lim0/h=underset(hto0)lim0=0`
Clearly, `underset(xto0^(-))limf(x)neunderset(xto0^(+))limf(x)`
So, `underset(xto0^(-))limf(x)` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:((|x|)/(x)",",xne0),(2",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x){{:((x)/(|x|)",",xne0),(0",",x=0):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={:{((3x)/(|x|+2x)',xne0),(0",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={{:((|x-3|)/((x-3))",",xne3),(0",",x=3.):} Show that lim_(xrarr3)f(x) does not exist.

Letf(x)={{:(x+1,", "if xge0),(x-1,", "if xlt0):}".Then prove that" lim_(xto0) f(x) does not exist.

Let f(x)={:{((|x|)/(x)",",xne0),(0",",x=0.):} Find lim_(xrarr0)f(x).

If f(x) is defined as follows: f(x){{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

f(x)={{:((sin2x)/(5x)",when "xne0),(m", when "x=0):} at x = 0