Home
Class 12
MATHS
Show that lim(xto0) (e^(1//x)-1)/(e^(1//...

Show that `lim_(xto0) (e^(1//x)-1)/(e^(1//x)+1)` does not exist.

Text Solution

Verified by Experts

Let `f(x)=(e^(1//x)-1)/(e^(1//x)+1)`
L.H.L of `f(x) " at "x=0` is
`underset(xto0^(-))limf(x)=underset(hto0)lim(0-h)=underset(hto0)lim(e^(-1//h)-1)/(e^(-1//h)+1)`
`underset(hto0^(-))lim(((1)/(e^(1//h))-1)/((1)/(e^(1//h))+1))=-1`
`[becausehto0implies1/htoooimpliese^(1//h)toooimplies(1)/(e^(1//h))to0]`
R.H.L. of `f(x)` at `x=0` is
`underset(xto0)limf(x)=underset(hto0)limf(0+h)=underset(hto0)lim(e^(1//h)-1)/(e^(1//h)+1)`
`=underset(hto0)lim((1-(1)/(e^(1//h)))/(1+(1)/(e^(h))))" "`[Dividing Nr and Dr by `e^(1//h`)]
`=(1-0)/(1+0)=1`
Clearly, `underset(xto0^(-))limf(x)neunderset(xto0^(+))limf(x )`
Hence, `underset(xto0)limf(x)` does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.2|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Question Bank|30 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

lim_(xto0)((e^(x)-1)/x)^(1//x)

Show that lim_(x rarr0)(e^(x)-1)/(sqrt(1+x)-1)=2

Show that (lim)_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(z))+1)does neg e xi st

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (e-(1+x)^(1//x))/(x) .

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate lim_(xto0)(sqrt(1+x)-1)/(x)

What is lim_(xto0) (sqrt(1+x-1))/(x)